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Fig. 1. Squares displaying the performance of two digit recognition classifiers trained on the MNIST handwritten digits dataset [24].
These classifiers yield the same accuracy of 0.87 (top: random forest, bottom: SVM), but show vastly different score distributions.

Abstract—Performance analysis is critical in applied machine learning because it influences the models practitioners produce. Cur-
rent performance analysis tools suffer from issues including obscuring important characteristics of model behavior and dissociating
performance from data. In this work, we present Squares, a performance visualization for multiclass classification problems. Squares
supports estimating common performance metrics while displaying instance-level distribution information necessary for helping prac-
titioners prioritize efforts and access data. Our controlled study shows that practitioners can assess performance significantly faster
and more accurately with Squares than a confusion matrix, a common performance analysis tool in machine learning.

Index Terms—Performance analysis, classification, usable machine learning.

1 INTRODUCTION

Performance analysis is critical in machine learning because it influ-
ences the models (e.g., classifiers or rankers) practitioners produce.
For example, practitioners often compare the performance of models
generated with different algorithm parameters before deciding which
parameters to use. In another example, practitioners typically itera-
tively develop feature-based representations of the data used in train-
ing a model, comparing performance before and after feature revisions
to ensure they are improving the model as expected.

Currently, the most common way to understand model performance
in machine learning is to look at summary statistics such as accuracy,
precision, recall, or logarithmic loss (see [13] for a review). Another
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common tool for performance analysis is the confusion matrix [35]
which contrasts model predictions against ground truth labels in a ta-
ble of aggregated values. Although statistics and confusion matrices
efficiently summarize performance, aggregated values can obscure im-
portant information about a model’s behavior. For example, the two
classifiers displayed in Figure 1 (a random forest classifier and a sup-
port vector machine classifier) were trained on the same dataset ob-
tained from the MNIST handwritten digits database [24] and yield the
same accuracy of 0.87 when applied to the same test dataset, but show
vastly different prediction score distributions. These score distribu-
tions are important for assessing error severity and prioritizing efforts
in debugging model performance. Aggregated values can also be mis-
leading in some cases. For example, when training data is skewed,
models can produce high accuracy values even when they have little
or no predictive power by always predicting the majority class [38].
Summary statistics and static confusion matrices also dissociate per-
formance from the data used in model training — a problem that has
been shown to hinder applied machine learning by introducing a bar-
rier between performance analysis and root cause debugging [29]. For
example, if a statistic or confusion matrix indicates poor performance,
practitioners typically have to search for offending errors in a different
tool or mode before they can begin to gain insights and debug the prob-
lem (e.g., inspecting errors may reveal mislabeled instances or feature



deficiencies). Separating performance from data in this way has been
shown to discourage data inspection, resulting in a trial-and-error ap-
proach to model building [29].

In this paper, we present Squares (Figure 1), a performance visu-
alization for multiclass classification problems. Multiclass classifi-
cation is a common task in machine learning for modeling problems
that naturally have more than two disjoint classes (e.g., digit recogni-
tion [24], disease category prediction [31], and topic identification in
documents [21]). Squares visually displays information used to derive
several common performance metrics while providing direct access to
data. This paper makes the following contributions:

• Survey results from over one hundred machine-learning practi-
tioners at a large technology company about their classification
practices and needs.

• The design and development of Squares, a performance visu-
alization for multiclass classification problems. Squares sup-
ports estimating common performance metrics while displaying
instance level distribution information necessary for prioritizing
efforts and accessing data.

• A controlled study comparing Squares to an interactive confu-
sion matrix. Results show that participants were faster and more
accurate at assessing performance, at both the aggregate and in-
stance level, with Squares. The majority of participants also pre-
ferred Squares over the common confusion matrix.

2 RELATED WORK

2.1 Multiclass Classification Techniques
Many tools have been created to support analysis of classifiers built
with specific algorithms such as support vector machines (SVMs)
[10], decision trees [7, 36], and Naive Bayes [8]. In contrast, Squares
can support analysis of any multiclass classifier that can output cali-
brated probability scores on instances [37] including SVMs, decision
trees, Naive Bayes classifiers, and random forests. Multiclass classi-
fiers can also be built by training binary classifiers and then combining
their outputs to make predictions on individual instances [5]. For ex-
ample, the one-vs-rest method (also known as one-vs-all) trains N bi-
nary classifiers for an N-class problem such that each binary classifier
discriminates one of the target classes from the rest of the classes. The
classifier that produces the highest one-vs-rest score then determines
the prediction class for each instance. With the one-vs-one (or all-vs-
all) method, binary classifiers are trained on every pair of classes and
majority voting is used to select the winning class prediction on each
instance. Squares can support analysis of these and any multiclass
classifiers that can produce scores on at least the winning class.

2.2 Understanding Classifier Performance
Common machine learning environments such as Weka [18], Scikit-
learn [30], and AzureML [1] provide summary statistics (e.g., accu-
racy, precision, recall) and confusion matrices as built-in function-
ality. Similarly, with programming languages such as Matlab [26],
R [19], and Python [3], people often use existing libraries to compute
performance statistics (e.g., the sklearn.metrics package [30]
for Python), and then plot them as basic charts. Summary statistics,
however, typically only convey a single aspect of a model’s perfor-
mance. For example, accuracy captures the number of prediction er-
rors whereas precision and recall emphasize false positive and false
negative errors, respectively. Confusion matrices [35] are a more de-
tailed type of summary statistics that aggregate instances by their true
label and prediction in a table. Many aggregated values such as counts
or percentages can, however, be misleading because they treat all pre-
dictions contributing to the value equally. For example, all false pos-
itive or negative errors within a cell of a confusion matrix are treated
equally, hiding important information about error severity. Summary
statistics and standard confusion matrices also separate performance
from the data necessary to provide insights into performance prob-
lems. As a result, if summary statistics indicate poor performance,

practitioners typically must switch tools or modes to search for and
inspect data associated with the performance issue.

Due to the cognitive overhead and inefficiencies in switching tools
to debug machine-learning performance problems, researchers have
advocated for a tighter coupling of performance with data instances
[29]. For example, Gestalt [28] is an integrated machine-learning
environment that includes an interactive confusion matrix that practi-
tioners can use to directly filter an adjacent display of raw data (e.g.,
images or text). While Gestalt helps associate performance with data,
like all confusion matrices, it still suffers from only showing aggre-
gated values that can hide information about model behavior.

Prospector [23] goes beyond summary statistics to help data ana-
lysts better understand predictive models. It helps data analysts un-
derstand how features affect the prediction through interactive partial
dependence diagnostics, and how and why specific instances are pre-
dicted as they are with localized inspection. However, Prospector re-
lies on partial dependence for only one feature at a time, and can han-
dle only single-class predictions.

2.3 Instance-based Performance Visualizations
Recently researchers have begun to investigate the use of interactive
instance-based visualizations to support performance analysis and de-
bugging in machine learning. For example, iVisClassifier [11] em-
ploys dimensionality reduction techniques [15] and instance-based vi-
sualizations including scatterplots and parallel coordinates to support
examination of model behavior. Here, instances can be color coded by
their true label and performance issues are indicated by the arrange-
ment of colored points in the display (e.g., a mix of colored points
may indicate poor separability of certain classes). Users can also click
on individual points to view the corresponding data instances.

To cope with high dimensionality, researchers have employed
projection-based methods. Frank and Hall [14] overlay color-coded
instances on colormaps on a 2D projected space. Rheingans and Des-
Jardins [32] use the self-organizing map [22] for projection, and visu-
alize feature levels with colored contours. The interactive visualization
in [17] and the iPCA system in [20] use projection-based scatterplots
and coordinated views for examining model behavior and inspecting
selected instances. While projection-based visualizations can convey
relative performance (a scatterplot with a greater mix of colors may
indicate worse performance than one where same-colored points are
more clearly separated), they are not designed to convey common per-
formance statistics such as precision and recall. Dimensionality reduc-
tion techniques also do not project onto fixed dimensions, making per-
formance comparison between classifiers or classes difficult. Squares
is designed to convey common performance metrics, while showing
labels and predictions in a consistent way to make comparison easy.

Both the Visual Classification Methodology in [27] and the Class
Radial Visualization in [33] visualize classifier performance via a ra-
dial arrangement of instances. Paiva et al. [27] use dimensionality
reduction and neighbor joining trees (similarity trees with branches
emanating radially) to arrange instances (color-coded by label) based
on feature space similarity as well as classifier confidence, where in-
stances with higher confidence predictions are located towards the
leaves of the tree. This visualization can be used for comparing per-
formance across classifiers (a tree with more mixed colored branches
may indicate more confusion), but actual performance can only be es-
timated with a second ClassMatch tree that colors instances by cor-
rectness (green and red indicate correctly and incorrectly classified
instances, respectively). In contrast, Squares shows ground truth la-
bels and predictions in the same visualization, allowing for more ef-
ficient performance analysis and estimation of common performance
statistics (e.g., class-level precision and recall that cannot be easily es-
timated with similarity trees). In the Class Radial Visualization [33],
each target class is assigned to a location around the perimeter of a
circle and individual instances (color-coded by prediction) are placed
within the circle according to their per-class probability scores. Again
here, relative classifier quality can be gauged but the layout does not
support estimating common metrics which instead are shown in an
adjacent panel. In both of these cases, error severity is indicated by
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Fig. 2. Distribution of common class sizes for real classification prob-
lems (note that the total number is greater than 102 given the check-all-
that-apply).

instance location in the display which helps to support prioritization in
error debugging, a primary design goal in Squares as well (see Section
4.1). However, as with scatterplot displays, point-based arrangements
such as these scale poorly to larger datasets due to point overlap. In
contrast, Squares uses instance grouping and different visual encod-
ings to scale up to larger datasets or number of classes.

2.4 Conveying Performance at Multiple Levels
ModelTracker [6] is an interactive instance-based visualization that
shares our goals of supporting both aggregate and instance level per-
formance information while providing direct access to data. However,
ModelTracker only supports binary classification and it is non-trivial
to extend it to multiclass scenarios. One approach proposed in [6] is
to visualize each one-vs-rest classifier individually and allow users to
switch between displays. This, however, makes performance estima-
tion inefficient. Even if each one-vs-rest display is presented side-by-
side, this method replicates each instance in all displays, distorting
estimation of overall-classifier performance and hiding information
about class imbalance. Moreover, as multiclass classifiers select the
highest score as the final instance prediction, there is no clear indica-
tion of the decision boundary on each one-vs-rest classifier. That is,
unless instance copies are connected in some way, it would be diffi-
cult to know which copy of the instance is chosen by the final model.
Squares extends the ModelTracker approach of leveraging unit visual-
izations for performance estimation and access to data, but specifically
addresses the characteristics of multiclass classification problems.

Perhaps most related to Squares is the system recently proposed by
Alsallakh et al. in [4]. This work shares our motivations to convey
overall and class-level performance (including performance statistics
that can be derived from prediction distributions and prediction cat-
egories such as true positives/negatives and false positive/negatives)
and help users prioritize debugging efforts by indicating error sever-
ity. The Confusion Wheel visualization they use, however, displays
prediction score-based histograms in a radial display which can cause
visual distortion of histogram bins. This distortion and the rotation
of histograms around the wheel can also make class-level comparison
difficult. The authors also explicitly avoid displaying instances in their
Confusion Wheel to remove the clutter and overlap problem common
in previous work. Squares builds up histograms with instances via bin-
ning, supporting instance-level performance while avoiding the clutter
problem. The system in [4] also employs separate but coordinated vi-
sualizations to convey additional information including accuracy, class
imbalance, and prediction scores. We argue that while coordinated
views can provide insights into a variety of model behaviors, they can
also add complexity to the performance analysis and debugging task.
Because performance analysis and debugging is one (important) step
of the iterative applied machine learning workflow, heavy weight tools
are often only experimented with after trial-and-error based iterations
fail [29].

With Squares, we endeavored to support the most important perfor-
mance analysis tasks (as indicated by our survey of over 100 machine
learning practitioners, see Section 3) within a single visualization to
reduce the cognitive load of the performance analysis step. Finally, we
evaluated Squares in a controlled experiment, validating the Squares
visualization for performance analysis.
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Fig. 3. Difficulty (5=Very difficult) and Importance (5=Very important)
of common performance analysis tasks with current tools.

3 SURVEY ON MULTICLASS CLASSIFICATION PRACTICES

We conducted a survey about current practices and difficulties machine
learning practitioners face when building multiclass classifiers. We
distributed this survey to relevant machine learning distribution lists
and user groups within a large technology company in July 2015, and
obtained responses from 102 practitioners. Here we present the survey
results that influenced our design of Squares.

Of our survey respondents, 37% were data scientists, 28% were
software engineers, 8% were researchers, 8% were program managers
and the remaining 19% had various other roles in the company in-
cluding technical support, consultant, and intern. Of the respondents
who self-reported their machine learning expertise level, 18% reported
themselves as experts, 33% as advanced, 34% as intermediate, and
15% as novice users. For testing and examining classifier perfor-
mance, 90% of respondents reported using common machine learn-
ing toolkits and libraries such as Weka [18], Scikit-learn [30], and
AzureML [1], 61% reported writing custom code in general coding
environments (e.g., Python, R, C#), and 28% reported using data anal-
ysis tools and spreadsheets (e.g., Excel, PowerBI [2]).

Figure 2 shows the distribution of responses to “How many classes
do your classifiers typically deal with?” We allowed participants to
select all answers that applied given that practitioners often work on
multiple classification problems that may not all deal with the same
number of classes. Among the 102 respondents, 51 (50%) reported
having built 2-class (i.e., binary) classifiers, 42 (41%) built classifiers
with between 3 to 20 classes (42 is the number of unique respondents
who checked any of 3–5, 6–10 and 11–20 classes), and 14 (14%) built
classifiers with greater than 20 classes (note that the total percentage
is greater than one hundred given the check-all-that-apply).

Figure 3 shows how respondents rated how important various per-
formance analysis tasks were (1–5 Likert scale, 1=Not important and
5=Very important) and how difficult it was to perform those tasks with
their current tools (1=Very easy and 5=Very difficult).

These survey results highlight several opportunities for improve-
ment in designing tools to support important tasks for machine learn-
ing practitioners. For example, most of our respondents reported typi-
cally dealing with no more than 20-class problems. Future researchers
may therefore consider focusing on tools for 20-class problems or less
for greatest impact or on tools for other machine learning techniques
such as regression or hierarchical classification, which are often em-
ployed for problems involving more than 20-classes. Our results also
show that, even with over 50% of respondents reporting themselves
as advanced to experts in machine learning, respondents reported dif-
ficulty prioritizing efforts in improving classifier performance. Re-
spondents also reported that understanding instance-level performance
was relatively difficult with common toolkits and libraries. Inter-
estingly, respondents reported less difficulty examining overall- and
class-level performance and between-class confusion, yet, our evalua-
tion of Squares compared to a common tool used by machine learning
practitioners shows both a speed and accuracy improvement on each
of these tasks (all rated as important by our respondents). While these
results highlight issues faced by a variety of practitioners with various
roles and expertise levels at a large software company, further analysis
is necessary to extend these findings to a wider population.



4 SQUARES

In this section, we describe three main design goals influenced by our
survey, our iterative design with real practitioners, and previous work.
We then present the Squares visualization and interaction facilities.
Note that after our controlled study (described in section 6), we further
refined the visualization to accommodate larger datasets and support
rich interactive exploration. We delineate the features introduced after
our controlled study accordingly in this section.

4.1 Design Goals
Based on our survey results, we aimed to optimize Squares for 3 to 20
class classification problems (covering approximately 41% of cases
reported by our survey respondents). This allowed us to make use
of visual encoding techniques that are more easily discernable when
there are no more than 20 categories, such as color (refer to Green-
Armytage’s 26-color alphabet [14]).
G1: Show performance at multiple levels of detail to help practi-
tioners prioritize efforts. Our survey results suggest that overall and
class-level performance should be most salient (as these were rated as
most important), followed by instance-level performance details. The
visualization should also help practitioners prioritize efforts in debug-
ging performance problems. For example, classes with more severe
errors (instances with high prediction scores in the wrong class) may
be more problematic than classes with less severe errors.
G2: Be agnostic to common performance metrics. Different clas-
sification problems require optimizing for different performance met-
rics. For example, in diagnosing diseases, a false positive diagnosis
can result in unnecessary and possibly harmful treatment, whereas a
false negative may result in a lack of treatment and potential worsen-
ing of the disease. The decision of what to optimize for is therefore
scenario dependent and based on the relative costs assigned to possi-
ble outcomes. To support a wide range of scenarios, the visualization
should therefore attempt to be agnostic towards any specific metrics.
For example, false positives should be comparably salient to false neg-
atives to support scenarios where either could be more costly.
G3: Connect performance to the data. Previous work has shown
that separating performance from the data necessary to provide in-
sights into performance problems is disruptive and encourages poor
practices [29]. The visualization should therefore support interactive
and direct access to data where possible. Reducing disruptive switches
between performance displays and data also suggests presenting both
performance and data on the same screen. Data is often presented raw
(e.g., images or text) or in featurized form (e.g., in a table) depending
on the data type. Consequently, the visualization should be compact
and flexible to support a variety of data display requirements.

4.2 Visualization and Interaction
Squares represents each class in a color-coded column. Each column
contains a vertical axis annotated below by the corresponding class
name and optional summary statistics (true/false positive/negatives
and precision/recall) for that class. The vertical axes align with the
leftmost axis indicating the prediction score range on instances, from
lowest scores at the bottom to highest at the top. Figure 4 shows the
performance of a 10-class classifier trained on the MNIST handwritten
digits dataset [24] where C0 to C9 corresponds to digits 0 to 9.

Visualizing Count-Based Metrics
Many common performance metrics in multiclass classification are de-
rived from different categories of prediction counts. For example, ac-
curacy is computed as the number of correct predictions over the total
number of predictions (correct and incorrect). Other metrics are de-
rived from different types of correct (true positive and true negative)
and incorrect (false positive and false negative) predictions. A false
positive for class X is an instance predicted as class X but labeled as
another, whereas a false negative for class X is an instance labeled as
class X but predicted as another. For example, precision is computed
as the number of true positives over the number of true and false pos-
itives while recall is the number of true positives over the number of

true positives and false negatives. To support a wide variety of classi-
fication problems (G2), we therefore designed Squares to make both
correct and incorrect predictions comparably salient, and to make both
false positive and false negative errors comparably salient by using po-
sition and pattern-coding of the boxes (Figure 4 and Figure 5).

Each box in the visualization represents an instance of the data.
Boxes positioned on the right side of an axis line represent instances
predicted as that axis’ corresponding class (column). Boxes are filled
with the color of their true class (i.e., the class they are labeled as).
A solid or striped fill pattern denotes instances predicted correctly or
incorrectly by the classifier, respectively. Boxes on the left side of any
axis line represent instances labeled as that axis’ corresponding class
(column) but predicted incorrectly as a different class. Boxes on the
left therefore denote false negative instances and have no fill color, but
are outlined with the color of the class being predicted.

Note that because false positives and false negatives are defined
with respect to a given class, there is a one-to-one correspondence
between each striped box (false positive) in one column and its match-
ing outlined box (false negative) in the column indicated by the color
of the striped box. That is, each error is represented twice in the dis-
play. This enables Squares to make false positive and false negative
errors comparably salient (G2). Duplicating errors also does not af-
fect between-classifier or between-class error comparisons (since er-
rors are duplicated in each case) (G1).

With this design, Squares helps users estimate several common
count-based overall and class-level performance metrics (G1, G2).
For example, classifier accuracy is estimated by the number of solid
boxes out of the total number of boxes on the right side of the axes
lines. (Considering all boxes on both sides of the axes can distort
this metric because errors are duplicated, but this again does not im-
pact between-classifier comparisons). Similarly, class-level precision
is estimated by the number of solid boxes out of the solid plus striped
boxes: TP/(TP+ FP) = /( + ); class-level recall is es-
timated by the number of solid boxes out of the solid plus outlined
boxes: TP/(TP+FN) = /( + ).

Showing Score-Based Metrics and Supporting Prioritization
Thus far, we have described how Squares visualizes common count-
based performance metrics. Some performance metrics, however, also
take into consideration prediction scores on instances. For example,
logarithmic loss penalizes predictions that deviate far from their true
label. To support estimation of metrics that also consider score (G2),
boxes on either side of any axis are positioned along the vertical di-
mension according to their prediction scores, with high scores to the
top and low scores to the bottom (Figure 1 and Figure 4). In this way,
striped or outlined boxes towards the top of a column should be pe-
nalized more than striped or outlined boxes towards the bottom. Simi-
larly, solid boxes towards the bottom of a column should be penalized
more than solid boxes towards the top.

Note that a drawback of binning boxes along the vertical dimen-
sion (for clarity of display) is that users may perceive boxes at the
top of a bin as having higher prediction scores. However, in our ex-
periences with machine learning practitioners, small score differences
are less problematic than large ones. Moreover, exact scores can be
revealed on demand (see Showing Instance-Level Metrics and Con-
veying Between-Class Confusion below) and bin resolution could be
parameterized in the display to allow for finer score distinctions.

Displaying scores not only supports estimating score-based perfor-
mance metrics, it allows for prioritizing efforts by prediction confi-
dence or error severity (G1). This is in contrast to count-based metrics
and confusion matrices that treat all errors equally (and all correct pre-
dictions equally).

Showing Instance-Level Metrics and Conveying Between-Class
Confusion
Distributing boxes vertically by prediction score provides instance-
level performance (G1). Some multiclass classifiers, however, produce
scores for an instance across all classes (in these cases, the class with
the highest score, the winning class, is selected as the predicted class).
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Fig. 4. Squares displaying the performance of a digit recognition classifier trained on the MNIST handwritten digits dataset [24]. All classes are
represented with stacks except C3 and C5 which are expanded to boxes for more details. The solid red boxes in C5’s column represents instances
correctly predicted as C5 while the green-stripped boxes in that column represent instances labeled as C3 but incorrectly predicted as C5.

Squares reveals scores for an instance across all classes on demand
when a user hovers or clicks on a box in the display (G1). Scores are
displayed using parallel coordinates, with a polyline intersecting each
axis at the corresponding score level for that class (see the polylines
in Figure 4 corresponding to the selected solid box in the C5 column).
Note that the polyline intersection may not align exactly with the ver-
tical position of the corresponding box because the line intersects at
the exact score location while boxes are binned along the score axis.

Instance scores across all classes also reveal between-class confu-
sion not visible in confusion matrices that only display confusions
about winning class predictions. Between-class confusion is indicated
when parallel coordinates for instances have high peaks in multiple
classes (i.e., have high prediction scores on multiple classes). Squares
summarizes confusion information via a sparkline above each axis dis-
playing the parallel coordinates of all instances labeled as the corre-
sponding class (callout in Figure 4). The sparklines are aligned so that
each class axis points to the same axis in the corresponding sparkline.
In this way, a class with little confusion with other classes will have a
single peak above the axis.

Scaling Up to Larger Datasets or Number of Classes
Machine learning often deals with large datasets. In these cases, it may
be unreasonable to display all instances individually as boxes. Squares
handles larger datasets by grouping boxes together within a bin by
their label, resulting in stacked bars representing proportions instead
of individual boxes representing instances (Figure 5, right). Note that
our visual encodings remain the same for stacks, with solid bars repre-
senting correct predictions and striped and outlined bars representing
false positives and negatives, respectively. Stacked bars can also be
used when the number of classes grows and more columns must be fit
into the display (reducing the amount of space available per column).

The stacks view allow Squares to show overall and class-level per-
formance as described previously. To still support viewing instance-
level performance (G1) with larger datasets or more classes, Squares
allows users to toggle individual classes between stacks and boxes by
clicking on their column.

For assigning a unique color to each class, Squares currently uses
D3’s 20 category color scale [9] for over 12 classes, the Color-
Brewer [16] paired colors for 6 to 12 classes, and the ColorBrewer
main colors for less than 6 classes. To support a larger number
of classes in the future, different colors may be obtained by using
semantically-resonant colors [25].
After the controlled study: We improved Squares further by (1) in-
troducing the strips view (Figure 5, middle) in addition to the boxes
and stacks view and (2) preventing overflow boxes or strips by replac-
ing them with a truncation indicator (Figure 5, left). The strips view
serves as a trade-off between boxes and stacks by allowing for more
instances to be displayed than with the boxes view, and better gran-
ularity for instance selection than the stacks view. Each strip in the
strips view represents 10 boxes by default (this could, however, be pa-
rameterized in the display), and is color- and pattern-coded in the same

Boxes Strips Stacks

Fig. 5. The strips and stacks view group boxes together when there
are a large number of classes or instances. Users can toggle between
boxes (left), strips (center), and stacks (right) at the class level.

way as the boxes it represents. The truncation indicators use i, ii and
iii to represent 1–10 boxes, 11–100 boxes, 101–1000 boxes, etc. This
allows users to still perceive the distribution (i.e., compare two bins
and see which has more instances) when there are too many boxes or
strips to display.

As with boxes and stacks views, the strips view orders errors to-
wards the axis line such that truncation indicators are more likely to
encode only correctly classified instances. In cases where a mix of
instances are truncated (e.g., errors and non-errors) the truncation in-
dicator is colored gray. Users can then hover over the truncation indi-
cators to reveal a summary of truncated instances or click on them to
view the corresponding instances in the table. Note that because this
may interfere with visual performance analysis, users are advised to
toggle to the stacks view or downsample the data in these cases.

Connecting Performance to Data

Squares displays performance information that can signal classifier
problems. However, previous work has shown that viewing the actual
data indicating performance issues is key to providing insights [29].
Squares therefore supports direct access to instances (G3) by allow-
ing users to click on boxes, strips, or stacks to reveal corresponding
instances or groups of instances in an adjacent table (Figure 6).
After the controlled study: In our initial design, to allow users to
examine instance attributes, Squares only displayed selected instances
in an adjacent table on demand (when clicked). After the controlled
study, we enhanced the coupling between Squares and the table view
in the following manner: 1) Through bi-directional selection linking,
Squares allows users to access instance properties by selecting boxes,
strips, or stacks from the visualization, and use the table to find in-
teresting instances (e.g., instances with a certain attribute) and review
them in the visualization (Figure 6). 2) Squares allows users to apply
filters based on attribute values to focus on interesting and important



Fig. 6. Bi-directional coupling between the visualization and table allows users to view instance properties in the table by selecting boxes, strips,
or stacks from the visualization, or locate interesting instances found in the table in the visualization.

patterns in a subset of the data. 3) Users can bookmark and tag in-
stances of interest, annotated in the visualization with a star and the
tag text (Figure 4), to keep track of interesting instance-level findings.

5 USAGE SCENARIOS

Here we describe example usage scenarios inspired by observations
and feedback from actual practitioners using Squares on their own data
(e.g., Twitter Sentiment dataset, entity extraction dataset for an address
extractor) during its iterative design. To improve clarity, we describe
these scenarios in the context of the MNIST handwritten digits dataset
[24], relating the scenarios back to figures in this paper.
Comparing models: Mary wants to build a handwritten digit clas-
sifier for an app she is creating to automatically scan receipts into a
digital format. The commercial machine learning toolkit she is using
to build her classifier supports a variety of machine learning models.
She decides to experiment with two different models, a support vector
machine (SVM) and a random forest model. She trains and tests the
models on handwritten digits data she has collected, and is surprised to
observe that both models show the exact same accuracy of 0.87. She
loads the classification results of both models into Squares to investi-
gate further (see Figure 1). With Squares she immediately sees that
although both models show the same accuracy performance, the solid
colored stacks in the SVM model are positioned much higher on the
vertical dimension relative to the solid colored stacks in the random
forest model. This indicates that the random forest model is much less
confident in its correct predictions than the SVM. In fact, in examin-
ing instances in the random forest model (see Figure 4), she can see
that some correctly classified instances have similar prediction scores
on incorrect classes (indicated by the polyline in Figure 4 showing a
similar prediction score for the hovered instance on both the correct
class C5 and the incorrect class C3). This is problematic because it
means that even slight variations or noise in the data may easily flip
predictions from correct to incorrect (ideally, correct predictions will
have high scores for the correct class and low scores for all others).
After examining her models in Squares, she decides to use the SVM
model in her app because of its superior performance.
Improving a model: Bob works for a postal service and is tasked with
creating a handwritten digit classifier for an automated mail sorting
machine that can distribute mail to the correct delivery workers ac-
cording ZIP codes they service. Not being an expert in machine learn-
ing, Bob decides to use a random forest model, which has relatively
few hyperparameters to understand and tune. He loads the classifica-
tion results into Squares, sees that the classifier has low confidence in
its predictions because many instances are distributed towards the bot-

tom of each axis, and decides to investigate the performance issues.
First, he expands some of the classes into strips view to locate any se-
vere errors that he should deal with first. He notices some strips of the
wrong color towards the top of both C1 and C7, which indicates the
wrong prediction with high confidence. He clicks on each strip to view
the corresponding instances in the table and sees that in both cases the
instances were mislabeled; the classifier was actually predicting the
instances correctly, but they were just given incorrect labels before
training (which explains their high prediction scores). He bookmarks
these instances with “mislabel” tags to fix the labels later (see starred
and tagged instances in Figure 4). Bob then examines some classes
with high between-class confusion. He notices the sparklines above
class C5 has two strong peaks on the correct class C5 and the incor-
rect class C3 indicating confusion between 3s and 5s (see callout in
Figure 4). He inspects some of the C3 instances incorrectly assigned
to class C5, by clicking on one of the green striped stacks in C5 and
viewing the instances in the table (see Figure 6). He can see that some
of the 3s do in fact resemble 5s (e.g., ‘3’ in the second row of the ta-
ble in Figure 6). He hypothesizes that these errors could be fixed by
increasing the resolution of pixels used as features in his model. He
goes back to his data and first fixes the mislabels that he found using
Squares. He then reprocesses the data to double the input resolution
he was using (from 7⇥ 7 to 14⇥ 14 pixels) and retrains his random
forest classifier. He reloads the results into Squares to see a boost in
performance with fewer errors and more confident correct predictions.

6 EVALUATION

We conducted a controlled experiment to evaluate the effectiveness of
Squares for performance analysis. The experiment consisted of two
parts (Figure 8). In the first part, we compared Squares to an interac-
tive confusion matrix in estimating overall-, class-, and instance-level
performance because confusion matrices are one of the most com-
monly used tools for examining classifier performance as many stan-
dard performance metrics can be derived from their cell values [34].
We created an interactive confusion matrix as recommended by pre-
vious work to provide more direct access to data [29]. In the sec-
ond part of the study, we examined the distribution capabilities that
Squares supports for estimating score-based metrics and class confu-
sion according to instance scores on all classes. Because confusion
matrices provide no support for viewing score distributions and only
show between-class confusions on winning classes (not confusions in-
dicated by scores on all classes), we only evaluate Squares in this part.



6.1 Conditions: Confusion Matrix vs. Squares
We compared the following two visualizations:
Confusion Matrix: An interactive confusion matrix (see Figure 7)
displaying instance counts in each cell and color-coded to emphasize
cells with larger counts (mapping white to 0 and red to the largest cell
count). Cells on the diagonal show the numbers of correct predictions
for each class (cf. solid boxes in Squares); non-diagonal cells in a
column show false positives for the corresponding class (cf. striped
boxes in Squares); non-diagonal cells in a row show false negatives for
the corresponding class (cf. outlined boxes in Squares). Although it
is possible to remove the diagonal from the color coding to emphasize
errors, we found the uniform coloring scheme to be most prevalent
in existing machine learning tools and toolkits (e.g., Scikit-learn [30],
AzureML [1]). We therefore chose to compare Squares to this standard
display instead of creating a specialized confusion matrix optimized
for our study tasks.
Squares: Our interactive visualization for multiclass performance
analysis. (In this experiment, we used our initial design which did
not support the strips view, truncation indicators, bookmarking, and
enhanced coupling between Squares and the table view.)

Note that, like with Squares, we connected the confusion matrix to a
sortable table for displaying selected instances as rows (and including
per-class score information). Participants could click on cells in the
confusion matrix to view corresponding instances. We also chose not
to include any summary statistics for both conditions for two reasons:
1) there is no consensus on what summary statistics (totals, accuracy,
precision/recall, etc.) to show in a confusion matrix, and 2) we wanted
to examine how well participants can understand and use the visual-
izations as opposed to how well they can read and compare numbers.

6.2 Tasks and Datasets
We created six tasks representing common performance analysis needs
(see Section 3). Tasks 1–3 pertain to estimating overall-, class-, and
instance-level performance, respectively. Tasks 4–6 pertain to estimat-
ing score-based performance and confusion between classes. Specifi-
cally, the tasks were:

• T1: Select the classifier with the larger number of errors (this
required displaying two visualizations side-by-side).

• T2: Select one of the two classes with the most errors.

• T3: Select an error with a score of .9 or above in the wrong class.

• T4: Select the classifier with the worst distribution (this required
displaying two visualizations side-by-side).

• T5: Select one of the two classes with the worst distribution.

• T6: Select the two classes most confused with each other.

For each task, we used the Chars74K images dataset [12] that con-
tains 62,992 synthesized characters from various computer fonts. To
understand the impact of class size on each performance visualization,

Fig. 7. The interactive confusion matrix used in our controlled study.
Each cell shows instance counts and is color-coded the cells by the
number. Selecting cells, columns or rows reveals selected instances in
the adjacent sortable table (below the matrix).

we created both a small and large class-size dataset by choosing a list
of 5 and 15 English letters as the classes, respectively, and avoiding
naturally confusing pairs such as “I” and “J.”

We generated classifiers for each task using the SVM algorithm.
For T1, we generated two classifiers for comparison: a “good” clas-
sifier with 0% of the data mislabeled and a “bad” classifier with 7%
of the data mislabeled by randomly flipping ground truth labels before
passing the data through the SVM. For T2, we introduced errors by
randomly selecting two classes, and adding 5% and 2% mislabels be-
tween them for the small and large class-size cases, respectively. For
T3, we introduced errors by randomly adding 5% mislabels over all
classes and 1% mislabels between a random pair of classes. For T4, we
again generated two classifiers for comparison, this time by creating a
“good” classifier with 0% of the data mislabeled and a “bad” classifier
by blurring the scores with a nonlinear function (s0 = s0.6) and then
re-normalizing them. For T5, we blurred the scores of two randomly
selected classes. Finally, for T6, we increased scores of the confused
classes by a random value within [0,0.5] and then re-normalized.

6.3 Study Design and Procedure
We ran the comparison part of the study as a 2 (Visualization: Squares
vs. ConfusionMatrix) ⇥ 2 (Class-Size: Small vs. Large) ⇥ 3 (Task:
T1, T2, and T3) within-subjects design (see Part 1 in Figure 8).
Small class size classifiers had 5 classes and Large ones had 15. To
control ordering and learning effects, we prepared two versions of
our datasets, and counterbalanced the order of the visualizations and
datasets. We also created a third version of our datasets for tutorial
and practice. We fixed the order of class size (from Small to Large)
and the order of tasks (T1, T2, and T3). In addition, we ran the second
part of the study as a 2 (Size: Small vs. Large) ⇥ 3 (Task: T4, T5, and
T6) within-subjects design (see Part 2 in Figure 8).

Each session began with a brief introduction to the study topic (i.e.,
multiclass classification) and an overview of the study procedure. We
then asked the participants to fill in a background questionnaire.

In Part 1, we began each condition with an introduction to the cor-
responding visualization and a hands-on tutorial with 6 practice tasks
(Small ⇥ T1–T3 and Large ⇥ T1–T3). Participants then practiced on
their own with another 6 tasks. For the actual study tasks, participants
performed three variants for each of the three tasks (T1–T3) per class
size (Small and Large). Before starting a task, participants were asked
to read the task description and then press a “Start” button to reveal the
task. Participants could select an answer from a multiple choice list of
all possible options displayed on screen or select an answer by click-
ing on rows in the table for instance-level tasks. Each question had an
“I don’t know” option that would move participants to the next task.
Participants were given 60 seconds to complete each task. If an answer
was not submitted within 60 seconds, the system moved participants
to the next task.

After each set of tasks per class size, participants completed a post-
class-size questionnaire. After completing tasks for both class sizes
in a condition, participants filled in a post-visualization questionnaire.
After completing both conditions, participants filled out a question-
naire comparing the two visualizations.

Participants went through a similar process in Part 2 but only with
Squares and the three remaining tasks (Small ⇥ T4–T6 and Large ⇥
T4–T6). At the end of the study, participants completed a post-study
questionnaire asking about their experience. The study lasted approx-
imately 90 minutes and participants received a $20 lunch coupon.

1 2 3 4 5 6

Visualization 1
Small Large

Vis. 2
Small

…

Part 1 Part 2

Squares

…
Large

…

Introduction & Tutorial Survey & Questionnaire Task (3 rep.)

Fig. 8. The study consists of two parts. In the first part, we compared
Squares to an interactive confusion matrix. In the second part, we eval-
uate only Squares for estimating score-based metrics.
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Fig. 9. Task time means. (top-left) per visualization: participants per-
form tasks faster with Squares. (top-right) per visualization and class-
size: participants tended to perform better with Squares as class size
increased from Small to Large. (bottom) broken down by visualization
and task: participant performance with Confusion Matrix was dispropor-
tionately more affected on T3 tasks compared to Squares. Error bars
represent 95% confidence intervals.

6.4 Participants and Equipment

We recruited 24 participants via an internal mailing list for people in-
terested in machine learning at a large technology company. Eligi-
ble participants had to have built at least one machine learning model
in the past using any existing tools, be familiar with the terms false
positive and negative, and not be color-blind. Participants included
data scientists, engineers, researchers, program managers, and interns.
63% of participants self-reported having passing (3 participants) or
some knowledge (11) of machine learning while 42% reported being
knowledgeable (8) or an expert (2). Participants also reported being
moderately familiar to familiar with confusion matrices (mean = 3.6,
median = 4 on a 5-point Likert scale from 1=Not at all familiar to
5=Very familiar).

We ran up to four participants at a time, performing tasks indepen-
dently in each session in a conference room. Each participant worked
on a 2.0 GHz Windows 8 Lenovo laptop with 8GB RAM. We attached
a 24” Dell LCD display running at a 1920⇥ 1200 resolution to each
laptop, as well as a mouse and keyboard. We turned the laptop away
from participants; participants could only look at the attached monitor
and use the attached mouse and keyboard.

6.5 Results

Part 1: Task Time and Accuracy

Since the task times were skewed, we performed a log transform
of the data prior to analysis. Because there is a tradeoff between
task time and accuracy (i.e., participants could reduce task time by
answering carelessly), we performed our statistical analyses of task
time conditioned on the participants answering correctly. We ana-
lyzed the task time data with a linear mixed model: log(TaskTime)⇠
Visualization⇥ClassSize⇥Task+(1|ParticipantID).

We assess the absolute fit of the model with two pseudo-R2 val-
ues. For only fixed effects, the marginal pseudo-R2 was 0.221. For
fixed and random effects, the conditional pseudo-R2 was 0.515. We
conducted an ANOVA with the model using both Satterthwaite’s and
Kenward-Roger’s approximations of degrees of freedom. We found
a significant main effect of Visualization (p < .001), with Squares

Visualization
T1 T2 T3

5 15 5 15 5 15

Helpfulness
Squares 4.3 4.3 4.7 4.1 4.1 4.7

Confusion Matrix 3.7 3.7 3.8 3.5 3.5 3.1

Preference
Squares 20 17 23 20 23 23

Confusion Matrix 5 7 2 5 2 2

Table 1. Subjective responses: (top) means of participant responses
on how helpful (5=Very helpful) the visualization was by task for each
class size; (bottom) the numbers of participants who preferred the visu-
alization by task for each class size.

(M = 8.84s1) being faster than the confusion matrix (M = 12.57s)
(Figure 9, top-left). We also found a significant main effect of Class-
Size (p < .001), with tasks involving Small class sizes taking less time
(M = 9.54s) than those involving Large ones (M = 11.65s). We also
found a significant main effect of Task (p < .001). Post-hoc tests in-
dicate that T1 took less time (M = 8.59s) than both T2 (M = 11.93s,
p < .001) and T3 (M = 11.44s, p < .001).

We found a significant interaction effect between Visualization and
Class-Size (p = .012), indicating that participants performed better
with Squares as class size increased from Small to Large (Figure 9,
top-right). We also found an interaction effect between Visualization
and Task (p < .001), indicating that participants’ performance with
the confusion matrix (M = 17.42s) was disproportionately more af-
fected on T3 tasks compared to Squares (M = 7.51s) (Figure 9, bot-
tom). Finally, we found an interaction effect between Class-Size and
Task (p = .001).

For accuracy, we performed an analysis using a generalized lin-
ear model with binomial distributions (i.e., logistic regression). To
avoid overfitting, only main effects are modeled. We found a signifi-
cant main effect of Visualization (p < .001), with Squares leading to
significantly more correct answers (M = 98.9%) than the Confusion
Matrix (M = 91.4%). We also found a main effect of Task (p < .001),
with both T1 (M = 96.9%) and T2 (M = 98.7%) leading to signifi-
cantly more correct answers than T3 (M = 92.7%). We did not find a
significant effect of Class-Size.

Part 1: Subjective Responses

From our study questionnaires, participants indicated that Squares was
more helpful for all tasks (T1–T3), in particular for T3 (M = 3.46 for
Confusion Matrix vs. M = 4.69 for Squares on a 5-point Likert scale
with 5 = Very helpful). Table 1 shows participant responses on how
helpful the visualization was for each task per class size.

In terms of overall preference, 83% (20) of participants indicated
preference for Squares for 5-class problems and 79% (19) for 15-class
problems. Table 1 shows a similar trend per task.

Part 2: Task Time, Accuracy, and Subjective Responses

The second part of our study only involved score distribution-based
questions with the Squares visualization. Therefore, here we only
report descriptive statistics (i.e., means). Overall, participants com-
pleted the three tasks quickly (M = 9.9s, SD = 4.9s) with high ac-
curacy (M = 95%) regardless of class sizes. They also reported that
Squares was helpful for completing the tasks. Table 2 shows a break-
down of average task time (in seconds), accuracy, and participant re-
ported helpfulness (5-point Likert scale with 5=Very helpful) on all
tasks per class size.

1Least squares means of log(TaskTime) are transformed back to seconds
and reported.



Task
Time (s) Accuracy (%) Helpfulness

5 15 5 15 5 15

T4 5.6 5.3 100 99 4.6 4.6
T5 8.5 8.6 97 97 4.6 4.6
T6 13.0 18.1 84 91 4.2 4.4

Table 2. Task time means, accuracy, and reported helpfulness (5=Very
helpful) for tasks T4–T6 for each class size.

7 DISCUSSION AND FUTURE WORK

7.1 Efficient Performance Analysis
Machine learning is a complex and time-consuming process where
practitioners must experiment with a wide variety of model inputs.
Tools for more efficiently assessing performance of alternative models
and prioritizing efforts in debugging issues can help ease the process.
Our study results show that Squares helps practitioners estimate mul-
ticlass performance not only faster but also more accurately than an
interactive confusion matrix for our overall-, class-, and instance-level
analysis tasks. This is particularly interesting given that respondents
of our survey on current classification practices reported that measur-
ing overall- and class-level performance was relatively easy with cur-
rent tools. Several participants also commented on Squares’ presen-
tation of performance information at multiple levels of detail as one
of the things they liked most (e.g., “I could scan a lot of information
quickly,” “Much easier to spot errors,” “Granular and at the same
time general overview of the classifiers is great”). The inefficiency of
the confusion matrix, particularly for instance-level tasks where par-
ticipants had to search for severe errors by sorting the adjacent table
(standard in current tools), was also mentioned by several participants
in their questionnaire responses (e.g., “Not possible to find high/low
score instances efficiently,” “I would prefer to have a way to look at
the error points in one place rather than searching and fishing them”).

Instance-level score information has been shown in previous work
to help practitioners prioritize efforts in improving model perfor-
mance [6]. Score distributions can, for example, help practitioners
distinguish between classifiers reporting similar summary statistics or
direct practitioners towards more severe errors or problematic classes.
Most common performance analysis tools for machine learning, how-
ever, do not visualize scores. Squares supports estimating score-based
performance by design. Part 2 of our evaluation also shows that partic-
ipants were able to efficiently and accurately answer our score-based
performance tasks. Several participants also commented on score in-
formation as one of the things they liked most about Squares (e.g.,
“Easy to visualize error scores, making strong FP/FN stand out” and
“Seeing the distribution of scores is very helpful”).

Note that we designed the confusion matrix used in our evaluation
based on those appearing in common machine learning toolkits and
added interactivity to better support error analysis. Future work may
consider comparing Squares to alternative confusion matrix designs,
such as confusion matrices without color shading along the diago-
nal to emphasize shading on errors or confusion matrices that support
row/column reordering. Future work may also compare Squares to
other performance visualizations proposed in the literature.

7.2 Preference and Familiarity
Our questionnaire responses also show that our participants preferred
Squares on all tasks even though on average they reported being al-
ready familiar with the confusion matrix. Participant comments about
their preference include: “[Squares] gave a better insight of what is
going on in the classifier at the very low level,” “I would use this right
now if I could,” and “Had fun for the first time while classifying!” Of
the participants who preferred the confusion matrix, some commented
about its familiarity and simplicity: “Confusion matrices are familiar,
so easy to understand” and “more straightforward, lower learning
curve.” Others commented about the ability to see numbers: “I prefer
having numbers than pure display” and “numbers help in some case.”

Interestingly, participants commented that they wanted both visual-
izations to contain more numbers: “Add some numbers to [Squares],
and everyone will give up on confusion matrices,” “Wanted numbers
for total sum [in Squares],” and “It would be nice to have the error
total for each row/col (minus correct) [in confusion matrix].” While
Squares can and does display some summary statistics (removed in our
study for fair comparison to the confusion matrix) and some tools aug-
ment confusion matrices with statistics (e.g., sums, precision, recall),
different scenarios require optimizing for different metrics making it
impossible to know in advance which to display. Alternatively, we
could display all available metrics; this, however, would likely make
performance analysis and comparison cognitively taxing.

7.3 Scalability

Our survey responses on multiclass practices showed that a large pro-
portion (41%) of classification tasks involve between 3–20 classes.
While confusion matrices are generally considered scalable to many
classes (simply requiring more rows/columns to the matrix), we were
surprised to see an interaction between Visualization and Class-Size
on task time in our study. Specifically, we found that Squares does not
seem to impose a significant overhead with the growth of class size or
with the type of task, as opposed to the confusion matrix, which was
associated with a significant decrease in efficiency on larger class sizes
and on T3. This result is likely because the confusion matrix was not
necessarily designed for efficient visual perception, but rather simplic-
ity and efficient use of screen space. For scalability to larger datasets,
Squares employs an interactive stacks and strips views to display per-
formance while still supporting direct access to subsets of data, and
supports toggling between the three views (boxes, strips, and stacks).

Squares aims to support 3–20 class classification problems. We
evaluated Squares with up to 15 classes showing that, as the num-
ber of classes increase, model- and class-level performance estima-
tion appear to scale well (see Figure 9). We hypothesize this is be-
cause model- and class-level performance estimation are supported
via differentiating textured/outlined boxes from solid ones. What may
become difficult is distinguishing between different errors within the
same column (i.e., differentiating between adjacent textured/outlined
boxes of different colors). This is partially mitigated through interac-
tions but could be further improved in future work by optimizing color
assignments to minimize the number of adjacent boxes with similar
colors. In addition, while we found that Squares could support dis-
playing up to 15 classes as columns in a single row, further investiga-
tion is needed to validate how well Squares extends to up to 20 classes
(perhaps by distributing columns across multiple rows so that stacks
receive enough pixel space for efficient visual analysis). Extending
Squares to support classification problems with more than 20 classes
is also an open area for future work.

8 CONCLUSION

We presented Squares, an interactive performance visualization for
multiclass classification problems. Squares displays information used
to derive several common performance metrics and helps practitioners
prioritize efforts in debugging performance problems while supporting
direct access to data. Our design of Squares is informed by a survey
we conducted on classification practices and needs, iterative feedback
from real users, and previous work. Our controlled study showed that
Squares helps practitioners assess performance significantly faster and
more accurately than a common confusion matrix, and was preferred
over the confusion matrix by most participants.

Squares continues a trend in recent work on usable machine learn-
ing, advocating for integrated tools that connect various steps in the
machine learning process. Squares specifically supports multiclass
classification. Future work may investigate instance-based visualiza-
tions for other machine learning tasks such as ranking and extraction.
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