
Tempura: Query Analysis with Structural Templates
Tongshuang Wu∗ Kanit Wongsuphasawat Donghao Ren

University of Washington Apple Inc. Apple Inc.
wtshuang@cs.washington.edu kanitw@apple.com donghao@apple.com

Kayur Patel
Apple Inc.

kayur@apple.com

ABSTRACT
Analyzing queries from search engines and intelligent assis-
tants is difficult. A key challenge is organizing queries into
interpretable, context-preserving, representative, and flexible
groups. We present structural templates, abstract queries that
replace tokens with their linguistic feature forms, as a query
grouping method. The templates allow analysts to create query
groups with structural similarity at different granularities. We
introduce Tempura, an interactive tool that lets analysts explore
a query dataset with structural templates. Tempura summa-
rizes a query dataset by selecting a representative subset of
templates to show the query distribution. The tool also helps
analysts navigate the template space by suggesting related
templates likely to yield further explorations. Our user study
shows that Tempura helps analysts examine the distribution of
a query dataset, find labeling errors, and discover model error
patterns and outliers.

Author Keywords
Natural Language Processing; Error Analysis; Query Analysis

CCS Concepts
•Information systems → Content analysis and feature se-
lection; Presentation of retrieval results; •Human-centered
computing → Visual analytics;

INTRODUCTION
We expect modern search engines and intelligent agents to
answer knowledge based questions. While the knowledge
representation and natural language processing communities
have made great strides [7, 26], these systems still fail at times.
To improve performance, developers need to analyze the query
data to understand where models work well, and where they
can be improved: What are the types of queries that users ask,
and how well do their models work for these queries?
*The work was done when the author was an intern at Apple Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6708-0/20/04. . . $15.00

Chris DuBois
Apple Inc.

cdubois@apple.com

TEXT
TEXT

ENT
TEXT

]
]

[
[
TEXT
TEXT

TEXT
POS

how
how

rich
$ADJ

is
is

$PERSON
bill gates

How rich is Bill Gates

t

q

t

Figure 1. Structural templates t generated from a given query q .

Such analysis is typically iterative and seeded in two ways.
First, developers may start by looking at aggregate perfor-
mance metrics like model accuracy, and then drill down into
more actionable groups [39, 44]. Alternatively, they may start
with a specific example that represents an experience, and try
to understand if the example is part of a general trend [41].
In both cases, developers need to find coherent query groups
larger than one example and smaller than the entire dataset.

Grouping instances to understand performance is easy for
structured data. For example, given a tabular data, developers
can easily group and slice it by an explicit, categorical fea-
ture (or column). However, grouping is more difficult with
unstructured data like text. For instance, text clustering [1]
or topic modeling [6] can produce groups, but those groups
are often difficult to understand. They can hardly distinguish
the similarity between “how rich is Bill Gates” with “how rich
is Jeff Bezos”, or with “how old is Bill Gates.” Developers
often try to rationalize those groups by looking at examples
within the group and guessing what the algorithm did. In fact,
various existing grouping methods all face certain challenges.
We analyze their limitations, and formalize four requirements
for a grouping strategy: To inspire actionable analysis, the gen-
erated groups should be interpretable and context-preserving.
To enable unbiased analysis, the groups should be representa-
tive of the dataset. Finally, groups should be flexible enough
to cope with developers’ varying needs.

While text data are usually tricky, queries are easier to group
than longer forms of text (e.g., from articles or books). This
is because queries are generally short and often share similar
structures. For example, “how rich is Jeff Bezos” and “how
rich is Bill Gates” are both one sentence questions. They are
also both identically structured “how rich” questions about a
person. In this paper, we aim to leverage this compact structure
in text queries to help developers explore query datasets, and
create meaningful groups for query analysis.

First, to group queries, we propose an alternative grouping
strategy via structural templates, which replace query tokens
with abstract ones based on linguistic features. For instance,
the template “how rich is $PERSON” abstracts the query

DOI: https://doi.org/10.1145/3313831.3376451

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 1

https://doi.org/10.1145/3313831.3376451
mailto:cdubois@apple.com
mailto:kayur@apple.com

A

B

C

F

D

G

E

Figure 2. Tempura interface. (A) The template overview panel lists structural templates automatically selected to represent the dataset’s query
distribution. Each row is associated with attributes summarizing their corresponding queries (E, details in Fig. 5). (B) The query panel lists individual
queries in the dataset. (C) The template traversal panel allows users to navigate related templates. A focused template selected for traversal (F, enlarged
in Fig. 8) has visual indicators suggesting related templates to explore. Clicking on the traversal options attached to each linguistic feature opens up the
neighbor template table (D). The table displays the corresponding parents or children, with the differing linguistic feature highlighted (G). Like in (G),
all templates allow previewing the example queries covered by an expanded template. Video demo: https://youtu.be/s_ODGuZU4G8.

“how rich is Bill Gates” in Fig. 1 by replacing the token “Bill
Gates” with its named entity type, $PERSON.

Structural templates satisfy the aforementioned requirements.
Directly generated from the query dataset, they can repre-
sent the data distribution. Linguistic features used in their
generations help preserve context. They also help developers
interpret and map between templates and the corresponding
queries. As we generate many templates for each query using
different combinations of linguistic features, analysts can flex-
ibly select templates to explore the query dataset from various
aspects. For example, instead of replacing “Bill Gates” with
$PERSON to find rich celebrities, one can instead replace “rich”
with a part of speech (POS) tag $ADJ to explore other queries
about “Bill Gates” (e.g., “how old is Bill Gates”). Analysts can
also change the granularity of the grouping. From the template
“how rich is $PERSON”, one can further abstract $PERSON
into a POS tag $NOUN. The resulting template “how rich is
$NOUN” will then include previously omitted queries like “how
rich is feta cheese”, and reveal ambiguities in the word “rich”.

Next, to help developers analyze queries with structural tem-
plates, we introduce an interactive system called Tempura
—template based query analysis (Fig. 2). With Tempura, de-
velopers may begin their analyses by looking at the template
overview panel, which presents a set of templates to summa-
rize the distribution of a query dataset. Alternatively, they may
find a particular query of interest in the query panel. Via inter-
active template traversal, developers may navigate between
query groups with different grouping aspects and granularities.
Underlying Tempura, we present an entropy-based measure
to suggest templates that developers may want to traverse to.
Based on this measure, we also develop a template summa-
rization algorithm to select a template subset for the overview.

We evaluate Tempura both in terms of the template selection
algorithm and the system. We demonstrate that the algorithm
can reveal distributional differences between three datasets
including Natural Questions [22], MS MARCO [28], and inter-
nal query logs from a commercial conversational assistant. In
a user study, eight experienced machine learning (ML) devel-
opers analyzed a query dataset and its modeling performance
with Tempura. Each of them was able to make around five
interesting observations on either the data or the model. These
findings included better understandings on dataset distribution,
labeling noises, as well as patterns and outliers in the model’s
errors — some of which are actionable observations that can
help them prioritize their decisions on data cleaning and aug-
mentation. Our users agreed that Tempura helped them make
more observations with less effort, and suggested additional
tasks where the structural template can be useful.

UNDERSTANDING QUERY ANALYSIS AND GROUPING
We interacted closely with a team of seven ML developers who
work on query analysis for six months. We studied their work-
flows through weekly informal interviews and direct observa-
tions. Here, we summarize their two primary query analysis
tasks, both requiring coherent query groupings. We then ana-
lyze the limitations of existing grouping methods, and identify
four requirements for effective grouping.

Key Tasks: Dataset Exploration and Error Analysis
Developers typically need to perform two primary query anal-
ysis tasks. The first task is dataset exploration (T1), in which
they broadly explore their data and perform sanity checks.
These sanity checks help developers ensure that their sampled
data meet their modeling needs (e.g., not under-representing
certain use cases) and do not have any data quality issues
(e.g., conflicting labels on similar queries). Data exploration

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 2

https://youtu.be/s_ODGuZU4G8

Interpretable Context- Representative Flexible
(G1) preserv. (G2) (G3) (G4)

Query properties 3 7 3 7
Manual labeling 3 3 7 3

Clustering 7 3 3 7
Structural templates 3 3 3 3

Table 1. Four requirements for effective query groupings (G1-G4). Ex-
isting query grouping methods all have limitations. Meanwhile, groups
created by our structural template satisfy all the requirements.

requires comparing the distributions of different query groups
(similarly phrased queries, those with the same labels, etc.)

The second task is error analysis (T2), in which practitioners
examine wrong predictions (e.g., from bug reports of deployed
systems [17]) to understand their models’ deficiencies. In
this case, developers instead usually start with an individual
query, and then find if certain errors generalize to systematic
error patterns. Although these two tasks have different starting
points, in both cases developers need coherent groupings of
queries to perform their analyses.

Query Grouping: Existing Methods & Requirements
We analyze limitations of existing query grouping approaches,
and identify four requirements for effective grouping methods:

G1 Interpretable. Groups should have clear definitions, such
that developers can predict what queries are included.

G2 Context-preserving. Groups should consider the actual
sentence context of the queries, not just coarse properties.

G3 Representative. Groups should reflect the dataset distribu-
tion, without biasing towards or overlooking queries.

G4 Flexible. Groups should help developers assess queries
that are similar (G4a) from different aspects (“how should
the queries be similar”) and at (G4b) different granulari-
ties (“how similar they should be”).

In practice, developers frequently grouping by query proper-
ties like query length or query types (e.g., question words).
However, such groupings only convey those particular at-
tributes, and thus preserve too little context (7 G2) from the
queries to form groups that reveal actionable insights. One
developer said “Knowing my model performs poorly on long
queries does not lead to next steps.” Alternatively, develop-
ers would assign query groups based on domain knowledge,
either manually or through filtering scripts. Such approach
may introduce the developers’ biases and cause the groupings
to be unrepresentative (7 G3). One could mistakenly filter
and focus on a group of “how rich” questions even when the
dataset doesn’t contain many such examples [41].

Clustering algorithms compensate both issues, capturing more
sentence meaning than query properties and extracting rep-
resentative groups directly from the dataset. However, de-
velopers only rarely rely on them. They are concerned that
clustering algorithms may chain unrelated queries together,
making the groups less coherent. For example, “how rich is
Jeff Bezos” and “how old is Bill Gates” can be in the same
cluster, just because they are both similar to “how rich is Bill
Gates.” As a result, developers usually have a hard time inter-
preting the groups (7 G1). They also cannot flexibly inspect
how the model respond to “how rich” and “how old” (7 G4).

q2

How rich is Bill Gates
How rich is Je Bezos

How old is Bill Gates
how old was Noah

q3

q4
t4

t1

t2

t3

how

how

how

how

how

rich

rich

rich

$ADJ

$ADJ

is

is

is

is

$be

bill gates

$PERSON

$NOUN

bill gates

$NOUN

q1

t5

Figure 3. Queries and their generated templates form a many-to-many
relationship. Each query generates multiple templates, and each tem-
plate covers a different group of queries.

THE CONCEPT OF STRUCTURAL TEMPLATE
To develop a grouping method that better satisfies aforemen-
tioned requirements, we leverage the fact that queries are
typically short and often share similar sentence structure, and
propose grouping queries via structural templates. Here, we
first describe how we generate structural templates from a
query, and how a template can represent a query group. We
then explain the hierarchical relationship between templates,
which allows analysts to explore the space of similar queries.

The Assumption on Query Structures
Tempura is built on the assumption that queries are properly
structured to support part-of-speech tagging. While prior work
describes real-world queries as potentially under-specified,
terse, and context-dependent [4, 5, 18, 35], our assumption
is valid here, as we focus on a subset of real-world queries:
knowledge-seeking questions. Filtering to a query subset is
common in practice for routing queries based on their format,
intent, or context. For example, ill-defined queries will trigger
hard-coded responses like “Sorry I don’t understand.” As a
result, we work on self-contained questions, which are usually
cleaner and are in line with the interests of developers we
interacted with. The questions are also mostly well-formed
in various question answering datasets (e.g., SQuAD [31],
VQA [2]) and public query datasets (e.g., Natural Question and
MS MARCO similarly discard non-question queries), to which
Tempura would directly apply. That said, the syntactic patterns
of ill-structured queries are still useful, and we envision how
Tempura can be extended for those queries in Discussions.

Template Generation: Abstracting Query Tokens
We define a structural template to be an abstract query that
replaces their original tokens with abstract tokens. To produce
abstract tokens, we use four linguistic features, listed from the
most specific to the most abstract:1

1. Lower cased original TEXT (“How” → “how”)
2. Normalized word form LEMMA (“is” → “$be”)
3. Named entity type ENT (“Bill Gates” → “$PERSON”)
4. Part-of-speech POS (“Bill Gates” → “$NOUN”)2

Each unique combination of the query’s linguistic features
produces a template. In Fig. 1, the linguistic features [
TEXT,TEXT,TEXT,ENT] generate the template that has ab-
stract tokens [“how”,“rich”,“is”,“$PERSON”]. Because
we extract multiple linguistic features from each token, a sin-
gle query can produce many templates, each with a different
1We color the abstract tokens in the templates based on their linguistic
features: text, $lemma, $named entity, or $POS tag.
2We merge n-grams entities and noun chunks, such that “Bill Gates”
can be treated as $PERSON or $NOUN, rather than $PERSON $PERSON.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 3

how
how
how

$ADJ
$ADJ

bill gates
jeff bezos

how $ADJ $be $NOUN

$PERSON
how
how

rich
old

$be
$be

$PERSON
$PERSON

$ADJ

B

C D

how $ADJ $PERSON$VERB

$be

A

$be
$be

Coarser Finer-grained

Figure 4. Parent and child templates for “how $ADJ $be $PERSON”, by
tweaking its different linguistic features: (A) is a parent template found
by merging $be with other possible LEMMA (e.g., $do) to $VERB (POS). Sim-
ilarly, (B) merges $PERSON with other possible ENT to get $NOUN (POS).
(C) and (D) are two sets of child templates splitting (C) the $ADJ and (D)
$PERSON into actual LEMMA forms.

set of abstract tokens. For instance, “how rich is Bill Gates”
(q1 in Fig. 3) can generate 5 templates. Each template in turn
covers multiple queries, and therefore represent a query group.
In Fig. 3, t2 (“how rich is $PERSON”) represents a group
of two queries (q1 and q2).

Templates provide several advantages. First, by pivoting
query tokens in a controlled manner, we create template-based
groups that are interpretable (G1) — analysts can easily map
between queries and templates. Second, because templates
mirror the syntactic structures of the grouped queries, these
groups are context-preserving (G2). Finally, as we extract tem-
plates from every query in a dataset, the resulting templates
can represent the dataset distribution (G3).

Hierarchy of Templates with Different Granularity
Because the linguistic features have a ladder of granularity,
the templates generated with these linguistic features form an
abstraction hierarchy. For example, person names and loca-
tions are both nouns, so tokens with named entity $PERSON
and $LOC will all have $NOUN as the POS tag.3 As a result, the
set of queries covered by “how rich is $PERSON” (t2 in
Fig. 3) is always a subset of those in “how rich is $NOUN”
(t3). In other words, t3 is an abstraction of t2.

The hierarchy provides flexibility (G4). Analysts can traverse
the hierarchy to examine query groups at different levels of
granularity (G4b). By changing a linguistic feature in a tem-
plate, one can move up to its parents (templates that are im-
mediately one level less specific) or down to its children (im-
mediately one level more specific). Consider the template
“how $ADJ $be $PERSON” in Fig. 4: changing the LEMMA
“$be” to its abstract POS tag “$VERB” generates the parent
(A), which includes other $VERBs besides $be. Similarly,
replacing “$PERSON” with its abstract POS tag “$NOUN” pro-
duces the parent (B), which covers more general questions by
including other $NOUNs beyond $PERSON names. On the other
hand, splitting “$ADJ” and “$PERSON” to their LEMMA forms
generate four children, two for (C) and two for (D).

Analysts can also traverse the hierarchy to examine groups
from different aspects (G4a). For example, from a template
that focuses on a specific attribute for different people (“how
rich $be $PERSON” in Fig. 4C), we can pivot to concentrate
on different attributes of the same person (“how $ADJ $be
bill gates” in Fig. 4D). To do so, we can first replace

3We merge $NOUN and $PROPN for simplicity.

14%

Error rate

168 3

Coverage Label Predict
 2

how rich $be $PERSON
A B C D

Template:

Figure 5. A template’s attributes, summarizing its corresponding query
group: (A) the number of queries covered; (B) the error rate; and the
label distribution of queries’ (C) ground truths and (D) predictions.

“rich” with its abstract POS tag “$ADJ”, and then replace
“$PERSON” with the TEXT “bill gates”.

THE TEMPURA INTERFACE
We develop an interactive system, Tempura, to help developers
use structural templates for query analysis (Fig. 2). In this
section, we present how the Tempura interface lets develop-
ers explore the queries and generated templates by showing
overviews first and providing details on demand [38].

Overviews: Bi-directional Starting Point
The Tempura interface provides both template and query
overviews. The template overview panel (Fig. 2A) lists a
set of templates to summarize the query distribution as a start-
ing point for dataset exploration (T1). We later describe how
Tempura selects templates for this overview in the Template
Summarization section. The query panel (Fig. 2B) lists individ-
ual queries and lets analysts start error analysis (T2) with one
query. To help users locate templates and queries to inspect,
both panels support searching with regular expression.

Both panels also display attributes associated with each tem-
plate and query, and allow users to sort the table entries based
on these attributes. The query panel shows a ground truth and
a predicted label per query. Meanwhile, the template overview
panel presents attributes of each template’s corresponding
query group (Fig. 2E), including coverage (the number of
queries covered by the template) and other statistical attributes
relevant to the modeling task (explained below).

The template overview is task-agnostic, as the table can show
different statistics for different modeling tasks. For exam-
ple, Fig. 5 shows attributes for a text classification task. The
stacked bar chart in Fig. 5B indicates the model performance
with error rate, or the ratio of incorrectly predicted queries
associated with a template. The distribution bar glyphs in
Fig. 5C and 5D show class distributions for the ground truth
and the prediction respectively. In this example, the template
contains three ground truth labels, but only two predicted la-
bels (with one dominating). These bar glyphs reveal that the
covered queries receive similar predictions, regardless of the
actual $PERSON in the query. In contrast, if the template con-
tains only one ground truth label but many predicted labels,
the model is likely not robust, and thus can be easily swayed
by $PERSON. To see more details about the distributions, users
can click on the glyphs to open a popup window showing an
enlarged bar chart (Examples in Fig. 9).

Details-on-demand: Multi-aspect/granularity Traversal
After starting their analyses from the two overviews, analysts
can further explore query groups of interest on demand with
template traversal, and thereby get varying views of the data.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 4

Sc(4,LEMMA)=0.66

how $ADJ $be $PERSON

Sp(4,POS)=0.54Sp(3,POS)=0

Sc(2,LEMMA)=1.33

A B

C D

t

Figure 6. Given a focused template t =“how $ADJ $be $PERSON”, we
can traverse to its parents (up arrows on top of $be and $PERSON), or
children (down arrow under $ADJ and $PERSON). The color density of
the arrows indicates how informative a traversal is. Bar charts denote
the coverage distribution of the templates affected by the traverse.4

Basically, analysts can traverse the template hierarchy, by
moving up to inspect coarser (more abstract) parents or down
to examine finer-grained (more specific) children templates.

To explore different query groups with template traversal, an-
alysts can first select a template of interest (Fig. 2A). Based
on the selection, the traversal panel (Fig. 2C) shows a focused
template on the top (Fig. 2F). For each token in the template,
the panel presents an arrow and a bar glyph to indicate poten-
tial traversal options. The arrow denotes the corresponding
token’s traversal direction: moving to children (down) or a
parent (up). For example, the arrows in Fig. 6 indicate the
corresponding two parent and two children sets in Fig. 4.

The bar glyphs help preview the templates related to cor-
responding traversals. For a downward traversal, the bar
glyph shows the children templates and their coverage. The
four bars in Fig. 6C indicates that moving from $ADJ to its
children will generate 4 templates (“how { $old, $much,
$big, $strong } $be $PERSON”). We can also see that
the coverage of the four children is roughly even. For an up-
ward traversal, the bars represents sibling templates (templates
with the same parent). The bar glyph in Fig. 6B shows that
moving from $PERSON to $NOUN will merge the current tem-
plate “how $ADJ $be $PERSON” with another sibling tem-
plate “how $ADJ $be $LOC”, which has a lower coverage.

When analysts select a traversal direction (by clicking an ar-
row), Tempura creates a neighbor template table (Fig. 2D),
which lists all corresponding neighbor templates shown in the
bar glyph and their attributes. As children or siblings of the
focused template, these templates only differ from each other
by one token. Therefore, showing them in one table helps
contrast similar query groups.

To help analysts avoid tediously enumerating all the traversal
options, we further compute traversal scores, and use them to
compare and rank all the traversal options. The score measures
how informative a traversal action is, or which traversal is
likely to yield further exploration. For example, moving from
a coarse parent template to its children is informative, when
the move provides multiple representative subgroups. We
use the color density of the arrow to encode the score. The
darker the arrow, the more preferable the traversal. In Fig. 8C,
the dark arrow suggests traversing down $ADJ — an exact
example of “provides multiple representative subgroups.” We
formalize this score in the next section.

4For simplicity, we omitted t from the entropy equations (e.g.,
Sc(2,LEMMA) in C represents Sc(t,2,LEMMA)).

SCORING TRAVERSALS
We introduce the traversal score used to color traversal ar-
rows in the interface. We want to guide the analyst towards
templates that have only a few abstract tokens, because they
are more interpretable (G1) and context-preserving (G2) than
those containing only abstract tokens. However, suggested
templates should also cover enough queries to ensure that they
are representative enough to be worth exploring.

Suppose an analyst starts with the template t in Fig. 6. She can
make $ADJ less abstract (C), to inspect all the child templates
that have a LEMMA for that token. This action “splits” the
current template into finer-grained templates, as in Fig. 4C. We
encourage this traversal when each of the split children covers
a significant number of queries. Conversely, this traversal is
not useful when only one or a few children cover the majority
of queries associated with t. In such cases, analyzing the high-
coverage child yield a slightly more specific subgroup, but at
the cost of seeing less queries overall.

To help users weigh this tradeoff, we define a traversal score
for each available traversal starting from a template t. Let ti
be the abstract token at position i in t, and |t| be the template
coverage. Let C(t, i, l) = {s ∈ Children(t) : si = l, |s| > 1} be
the subset of children covering more than one query, where
we have set the i-th token to be a less abstract token, us-
ing a less abstract linguistic feature l. In our previous $ADJ
case, the templates in Fig. 4C (also Fig. 6C) are examples of
C(t,2,LEMMA). Because all the templates in C(t, i, l) differ on
the i-th abstract token, their covered queries are mutually ex-
clusive. For traversing to child templates, Sc(t, i, l), we use the
entropy of the normalized coverage of a template’s children,

|s| |s|
Sc(t, i, l) = − ∑ log

|C(t, i, l)| |C(t, i, l)|s∈C(t,i,l)

where |C(t, i, l)| = ∑s∈C(t,i,l) |s|.
We use the entropy to encourage traversals where each of the
children have a similar amount of coverage. We discourage
traversals when the distribution of coverage among those chil-
dren is “peaked”; in those cases, the resulting templates have
reduced coverage while providing only a small increase to the
coherence for each subgroup of queries (G1).

Similar to traversing towards children, analysts can traverse
to parent templates, i.e., use a more abstract linguistic feature
l for i-th token in t. While traversing towards children splits
a template, traversing to a parent conversely merges sibling
templates (templates that have the same linguistic features as
t and have the same parent). For example, templates in any
C(t, i, l) are siblings of each other. Just as before, we define a
traversal score which encourages traversing to parents whose
child templates each cover a significant number of queries. For
the parents of t that arise from making token i more abstract,
we compute the same entropy score as before, but instead
normalize over the siblings of t, R(t, i, l) = {s ∈ Siblings(t) :
si = l}. We denote this score Sp(t, i, l).

TEMPLATE SUMMARIZATION
We now present an algorithm that helps select templates for the
template overview panel (Fig. 2A). Our goal is to select a set of

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 5

representative templates to summarize the query distribution,
and use it as a starting point for dataset exploration (T1).

Intuition: Two Aspects to Consider
To construct representative groups of queries, we prefer tem-
plates with high coverage. Meanwhile, to effectively initiate
the exploration, we want to include templates that are more
preferred than any of its parents or children. If the parents
or children are preferred, analysts will need to perform extra
traversing steps to reach the interesting grouping structure.

The traversal score defined previously provides a ranking
between a given template and all its parents and children.
A template t should be selected when we do not encourage
traversing to any of its parents or children. We define I(t) to
be the maximum of t’s traversal scores — all the Sc(t, i, l) and
Sp(t, i, l) for different tokens i and abstract tokens l:

I(t) = max(maxSc(t, i, l),maxSp(t, i, l))
i,l i,l

Recall that traversal scores represent preferences towards par-
ents and children. With I(t) being the maximum, the lower it
is, the less likely t should be split or merged at any tokens, and
therefore the more likely we want to include it in the overview.

Selection as a Weighted Set Cover Problem
To take these two aspects into consideration, we form the tem-
plate selection as a weighted set coverage problem. We see
the query dataset Q = {q1, ...,qn} as the entire set of elements.
Then, each template t in T = {t1, ..., tm} represents a subset
of Q that contains a number of queries |t| (the template cov-
erage). We use I(t) as the weights, such that templates with
low preferences are penalized by having a high weight. Our
goal is to find a set T ∗ ⊂ T such that (1) T ∗ covers at least aS
user-specified ratio, c, of queries:|T ∗| = | t∈T∗ t| ≥ c|Q|; and
(2) the sum of the weights of the subsets in T ∗ is minimized.

Algorithm 1: Template selection
Data: query set Q, generated templates T , min cover. ratio c
Result: a list of overview templates T ∗

1 T ∗ = {};
2 while |T ∗| < c|Q| do
3 t∗ = argmint∈T I(t) / (|T ∗ ∪{t}| − |T ∗|) ;

∗ 4 T = T ∗ ∪{ t∗ } ;
∗ 5 return T

Weighted set coverage is a NP-complete problem. Here we
use a classic greedy algorithm (Algorithm 1) to compute an

∗approximate T [43]. The algorithm repeatedly chooses a
template t that minimizes the weight I(t) divided by number
of queries in t not yet covered by the chosen templates (|T ∗ ∪
{t}| − |T ∗|). It then stops and returns the chosen templates
(T ∗) when they form a cover of the original set of queries.

We experiment our selection algorithm on different query
datasets. Compared to alternative weighting strategies, our
algorithm selects a larger number of templates, but tends to
selects more interpretable and context-preserving “what $be
$NOUN” rather than “what $VERB $NOUN”). We find the al-
gorithm can reduce the exploration burden: Heuristically, to

Dataset
NQ

l(q)
7.6 ± 1.8

|T |
2,662,618

#|t| > 1
16,976 (0.66%)

MS MARCO 5.2 ± 2.5 992,483 6,601 (0.66%)
Assistant 5.3 ± 1.6 509,734 29,732 (5.83%)

Table 2. The tested datasets with their query lengths l(q), and the at-
tributes on generated templates. From the total number of generated
templates (|T |) and the proportion of those covering at least two queries
(|t| > 1), we see NQ and MS MARCO are more sparse than Assistant.

cover 75% queries of a dataset, the method selects a number of
templates that is around 10% of the dataset size (for a 10,000
query dataset, the method selects around 1,000 templates).

Case Study: Templates Selected from Different Datasets
To test whether our automatic template generation and sum-
marization can reveal dataset characteristics, we use Tempura
to process three datasets:5 (1) Natural Question (NQ) [22] and
(2) MS MARCO [28], which are collections of real queries is-
sued to Google and Bing Search Engines, respectively, as well
as (3) anonymized search queries from a commercial conversa-
tional assistant (Assistant) that occur on more than 10 different
devices. The queries are all seeking general knowledge (not
related to personal information). They are automated speech
recognition transcripts with no audio attached.

These datasets are used for training question answering sys-
tems [20].We are interested in understanding if queries from
different sources differ. To explore this, we sample 10,000
queries from each dataset (with the training and the develop-
ment set combined) and generate templates from them. We
report two major results below.

Crafted research datasets are sparser. The number of gen-
erated templates in Table 2 reveals NQ’s apparent distribu-
tional difference. It generates many more unique templates
(around 2.5 million) compared to the other two alternatives
(within 1 million). This is likely because additional filters on
NQ only keep queries that have (1) more than eight words6,
and (2) a closely related Wikipedia page. The cartesian prod-
uct of linguistic features then generates more templates from
the longer queries. In other words, while the filters help locate
complex questions, they also shift the distribution to be less
representative of the natural queries. While MS MARCO gen-
erates fewer templates than NQ, it still contains more diverse
queries than Assistant: Both NQ and MS MARCO only have
0.66% templates with coverage greater than 1.

Real-world queries have different distributions. Further
comparing the less sparse MS MARCO and Assistant, we no-
tice that the most representative templates differ. While “what
be $NOUN” is an important template in both MS MARCO and
Assistant, this template has a much higher coverage in the for-
mer. The selected templates diverge afterwards: MS MARCO
has many $NOUN (e.g., “401k loan requirements”, “employee
turnover types”) while Assistant has more “what $do $NOUN
mean” queries. The $NOUN case in MS MARCO is especially
interesting: all the query datasets were filtered to only keep
knowledge-seeking question queries, yet the other two didn’t
5We augment linguistic features with SpaCy (https://spacy.io/).
6NQ’s average query length appears to be less than eight in the table,
as we merged noun chunks.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 6

https://spacy.io/

what be NOUN

NOUN

what be NOUN of NOUN

how to VERB NOUN

what be NOUN in NOUN

 Assistant

MS MARCO

A

B

0 200 400 600

coverage |t|

te
m

pl
at

e
(t)

what be NOUN

how do PRON spell NOUN

what do NOUN mean

how to VERB NOUN

te
m

pl
at

e
(t)

what be NOUN of NOUN

what

how

who

where

bequ
er

y
ty

pe

02,0004,000

#queries

how

what

who

be

whenqu
er

y
ty

pe

Figure 7. The five most representative templates and most frequent
query types for the sampled queries in (A) Assistant, and (B) MS
MARCO. They have similar query types, but their templates differ af-
ter “what $be $NOUN”. This indicates that the templates can capture
more dataset characteristics than the conventional query types.

show any $NOUN queries, indicating different filtering strate-
gies. Such dataset differences are difficult to notice from just
the query types (in Fig. 7) or query length (in Table 2).

USAGE SCENARIO
We present a scenario to demonstrate how developers can
use Tempura to better evaluate a BERT-based classification
model [7] on a query dataset. The task is to predict if a query
is in one of four categories: food (“can I freeze spaghetti”),
health (“what is Keflex used for”), procedural explanations
on how to perform some tasks (“how to clean white shoes”),
or none of above. The dataset contains 10,000 anonymized,
knowledge-seeking queries from Assistant (75% of which are
covered by the selected overview templates). It is a sample of
the development set that the developers are building a model
on. This scenario is inspired by the analyses that participants
perform in our user study, which uses the same data.

The developer first filters the templates to only keep those
covering more than ten queries, and sorts them by their error
rate in descending order (Fig. 10). The template with the high-
est error rate is “how $can $-PRON- $VERB $NOUN”. Out
of the 26 covered queries, 46% are incorrectly predicted. In-
specting them, he notices noisy labels, namely similar queries
are labeled as asking for a procedural explanation (“how can I
boil eggs”7) and about food (“how can I cook salmon”). The
developer verifies that queries on cooking procedures make
these two label pairs non-exclusive. He treats this observation
as supporting evidence to switch to a multi-label classifier.

Afterwards, the developer explores similar templates via tem-
plate traversal. With the focused template panel (Fig. 8), he
notices the dark arrow in B, which suggests that merging $can
into its parent POS form ($VERB) is the most informative traver-
sal. Other traversals indeed seem less useful. The bar charts
associated with $VERB and $NOUN (C) show that they have a
large number of sparse and unrepresentative children. Mean-
while, merging $how (A) yields a very little gain, as its two
neighboring templates have few queries associated with them.

7All the queries referred in the paper have a query frequency larger
than 10, i.e., occur on at least ten unique devices.

how $can $-PRON- $VERB $NOUN
A B

C

Figure 8. Traversing a focused template. The dark arrow in B suggests
moving from $can to its parent form $VERB.

A

0 15 30 45 60
count

B
food

health
none

procedural

la
be

l

0 15 30 45 60
count

food
health
none

procedural

la
be

l

how $can $-PRON- $VERB $NOUN
Figure 9. The ground truth label distributions for queries covered by
two closely related neighboring templates, with (B) “how $do $-PRON-
$VERB $NOUN” having a much larger portion of food related queries.

Thus, the developer follows the suggestion, and traverses up
from $can. Doing so triggers the neighboring template panel
(Fig. 2D) to present sibling templates with different $VERBs.
He notices that the dataset contains a large number of queries
in the form of “how $do $-PRON- $VERB $NOUN”. By ex-
panding the bar charts for the ground truth labels (Fig. 9),
we see an interesting label distribution difference between
the two templates: the queries under the $can template are
labeled as health, none, and procedural while those under $do
are mainly food related. The developer notes that queries in
these two forms should be similar, and proposes to augment
the data (i.e., to create another batch of food questions by
replacing “do” with “can”).

Despite the distribution differences between “$can” and
“$do”, the developer deems these templates identical, and
moves to inspect “how $VERB $-PRON- $VERB $NOUN”.
Afterwards, he instead traverses down the second $VERB to
understand what are the actions being queried. Fig. 10 shows
a neighbor template table for the traversal. Among the four
child templates covering most queries, “how $VERB $-PRON-
$cook $NOUN” has the most indicative verb, with all queries
labeled and predicted to be food related. Meanwhile, “how
$VERB $-PRON- $do $NOUN” has high error rate with only
one predicted label (none). Retrieving its queries, the devel-
oper notices that all but one are labeled as procedural. He
suspects the model neither understands the template, nor recog-
nizes the $NOUNs (“division”, “a screen recording”, etc.) This
model error pattern suggests the model has underfitted to
this form of query. The lemma $make has the highest coverage.
The model predicts most of the “$make” queries to be food.
However, 6 of 33 queries are labeled as procedural despite in-
volving alcoholic beverages (“how do you make vodka”, “how
do you make a margarita”). In hindsight, these queries could
arguably have both labels. Furthermore, in $play, we see a
model error outlier: with “chess” and “old maid” both being
board games, “how do you play chess” is labeled as procedural
but predicted as none, whereas “old maid” shows the reverse:
labeled as none but predicted as procedural. Our developer
notes the conflict and decides to double check the labels, as
well as the model stability on various similar $NOUNs.

Hoping to see a comprehensive list of procedural queries,
the developer samples more queries with the procedural la-

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 7

$make 3

80%

50%

21%

0%

Error rate

5

 34

6

10

Coverage Label Predict

 3

$cook 1 1

$play 2 2

$do 2 1

Figure 10. Neighbor template table showing the top four LEMMA ($make,
$cook, $play, and $do) after splitting the second $VERB in “how $VERB
$-PRON- $VERB $NOUN”.

bel. He notices many queries asking “how to do (some-
thing).” He generalizes from those queries to a template,
“how to $VERB $NOUN”. He finds that this template (with
35 queries) has a higher portion of food queries (85.7%),
but most queries are semantically similar to those in “how
$VERB $-PRON- $VERB $NOUN”. He creates a single, reg-
ular expression-related template capturing both subgroups:
“how ($VERB $-PRON-|to)+ $VERB $NOUN”, so he can re-
visit these queries in future investigation.

USER STUDY
We ran a user study to answer the following three questions:

Q1 Can Tempura support data exploration and error analysis,
and help participants make actionable observations easily?

Q2 How do analysts decide which templates to inspect?
Q3 Are Tempura’s components useful for exploration?

Our user study lasted for one hour. We first surveyed par-
ticipants’ query analysis experience. Next, we provided a
tutorial outlining the features of Tempura. Participants then
used Tempura to explore the same data and model as described
in Usage Scenario. We encouraged participants to think aloud
and describe their observations while they explored. We noted
down their observations throughout the session (Q1), and
also logged their clickstreams for analyzing their exploration
process (Q2). Afterwards, we confirmed the recorded observa-
tions with the participants, and they rated each observation by
the ease of discovery, relative to their prior experience working
with queries in the wild. Participants further self-assessed how
much more they learned about the dataset and the model, and
rated the usefulness of different components in Tempura (Q3).
All the ratings were collected in the form of five-point Likert
scale [24]. Eight ML developers at Apple participated in our
study, all with prior query analysis and modeling experience
(worked on 3-10 datasets, µ = 6.2). Below, we answer the
questions with the study outputs.

Q1: Users made actionable observations in Tempura.
Observations are on datasets and errors.
As mentioned in Usage Scenario, participants noticed both
general patterns and outlier behaviors in dataset and error anal-
ysis. Their observations can be divided into four categories,
as in Table 3. On average, subjects reported 5.4 ± 1.83 obser-
vations.8 In total, participants made 26 unique observations.
Participants made around the same number of observations
8We counted participants’ self-reported observations. Recall that we
confirmed and asked them to rate each one of their observations.

on datasets and on models, indicating Tempura can support
both tasks. They consistently rated that it was easier to make
observations in Tempura (4.5± 0.73).

Observations are actionable.
Five out of eight participants noted that their observations were
actionable, and proposed several potential next steps. For ex-
ample, templates helped them improve their labeling tasks.
With templates covering interchangeably labeled queries (data
noise issue), they would not only clean up existing labels, but
use example queries in those template groups to revise the
labeling instructions. Templates’ label distributions could also
guide training data revision. Participants would overcome
the template overfitting issue (i.e., queries covered by one
template are all predicted the same, regardless of their labels)
by collecting data with the same syntax but different label.
In contrast, for underfitting templates (i.e., the correlation
between a template and a label is not correctly learned), partic-
ipants would augment the data with semantically neighboring
templates. Templates could also help build targeted and chal-
lenging validation sets for testing specific syntax phenomena.

Tempura could be better at error analysis.
Participants agreed that they understood more about both the
dataset (4.4 ± 0.45) and the model (3.9 ± 0.90). Generally,
participants believed their analysis on data distribution was
more thorough, because various factors that Tempura does not
consider — model architecture, transfer learning effect — can
all account for an imperfect model. They offered suggestions
on improving Tempura for error analysis. For example, to
prioritize problematic templates, we could select overview
templates using entropies on model related measurements
(e.g., error rates). Such measurement can further surface tem-
plates related to error analysis, but we worry it would focus
too much on a specific model, at the cost of general dataset
information. One participant also mentioned that adding word
frequencies could help understand whether the model is over-
fitting to particular templates or keywords. In fact, structural
templates can be paired with many conventional attributes
(query length, sentiment, etc.) Further investments are needed
to understand which additional debugging attribute provides
the most comprehensive view.

Q2: Attributes as the primary clue.
We retrieved participants’ clickstreams affecting the overview
table, and programmatically labeled them into four types: find-
ing templates that (1) have a certain attributes pattern like high
error rate or coverage (Attr), (2) contain queries with specific
ground truth or prediction label(s) (Label), (3) satisfy a partial
template search filter, in the form of regular expression pattern
(Regex), and (4) are generated from a specific query (Query).

The results revealed that participants surfaced templates they
would like to inspect via all strategies, but the most common
ones were by sorting or filtering Attrs (used by all participants),
or particular Labels (seven participants). Users’ free form
responses reflected that they highly valued the coverage and
error rate. Three participants (P3, P6, P8) also commented that
the label distributions were useful. P6 said he actively searched
for structural overfitting (templates with only one prediction
label). P8 expressed particular interest in templates with more

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 8

Observation Type Count Examples
Dataset distribution 7 (27%) “how long $do $-PRON- $VERB $NOUN (for)*” (148 queries) are all food related (e.g., “how long do you boil corn”),

whereas “how long $do $-PRON- take for $NOUN to $VERB” (16 queries) has half of health queries (e.g., “how
long does it take for a piercing to heal”).

Dataset noise 7 (27%) 2 out of 86 queries in “can dog (have|eat)+ $NOUN” are labeled as health, but the $NOUNs are all food (“corns”, “rice”).
All the 9 queries in “what $be the benefit of $NOUN” are predicted to be health, but 4 are labeled as none.

Model error pattern 10 (38%) The model cannot understand rare tokens. The $NOUNs in “what $be $NOUN used for” (57 queries) are all medical
related, but the model only predicts 28 (49.1%) to be health — possibly affected by their training frequencies.
Overfitting to templates. “is $NOUN bad for $-PRON-” (5 queries) are all predicted to be health related, even for “is
college bad for you” (supposed to be none).

Model error outlier 2 (8%) In “can $-PRON- $VERB $NOUN” (29 queries), similar queries are predicted differently: “can I block a contact” is
predicted as none, whereas “Can I block unwanted phone calls” is procedural.

Table 3. Participants’ example observations on (1) Dataset distribution (they observed frequent query patterns); (2) Dataset noise (they discovered
labeling issues or illegitimate queries); (3) Model error pattern (they concluded systematic error categories); (4) Model error outlier (they noticed
model’s specific strange behaviors that are not generalizable, or that related queries are mostly correctly predicted).

varying labels: “Sometimes we locally improve models for
queries with certain patterns. This helps me understand, for
example, if the data augmentation on a specific label has
negative effects on queries with the same syntax but different
labels.” Only four participants generalized template structures
from a Query. P7 explained that generalization required more
of a mental model on the template-query mapping, and thus
was harder than starting from template overviews.

Q3: Tempura is effective; Users learned more on dataset.
When assessing the usefulness of different components, users
rated the algorithm selected overview templates (4.2 ± 0.63),
cross-filtering between templates and queries (4.4±0.68), and
supportive attributes (e.g., error rate) & interactions (e.g., sort-
ing) (4.7 ± 0.41) as very useful, and rated template traversal
(3.6 ± 0.83) as potentially useful. They especially liked the
combination of templates and attribute summaries, saying
it greatly helped redirect their attentions to important query
groups. The lower rating for traversal could be due to the size
of the dataset. As P4 pointed out, “With 10k queries, inter-
esting hierarchical groups are less common. I found myself
sometimes getting many low coverage child templates.”

Participants all thought Tempura was intuitive to learn, and
at the same time it greatly enhanced their query exploration
experience. Five users commented that Tempura offered a
finer-grained and systematic analysis process, making their
observations more precise. They mentioned that structural
templates provided more efficient and intuitive starting points
for categorizing raw queries, helped them to bypass the large
coding overhead needed, and sped up their otherwise tedious
manual process. The speed up was significant. As P1 de-
scribed: “I learned 7 new things in the last half an hour!
Without the tool, I would spend all those time writing Python
scripts without knowing if it will lead to anything significant.”

RELATED WORK

Query Text Analysis
Seeking to reveal systematic and actionable patterns in a
dataset, existing analysis methods usually slice text queries
into groups-of-interest in various ways. However, grouping
unstructured queries is challenging. Groups created manually
or via grouping scripts [41, 32] are usually not representative
of the dataset distribution. Filters on query properties can scale
(e.g., word frequency [9], query length or answer type [39,
21]), but prior work has noted that such features usually could

either overlook the context of the whole sentence [27, 34], or
get too abstractive to be precise and interpretable [6].

Meanwhile, without isolating features, researchers have also
tried to organize the dataset by automatically classifying [36,
3] or clustering [1] similar queries together. To date, such al-
gorithms measure similarities with TF-IDF [1] or embedding-
based [40] distances, which usually result in query groups
with mixed semantic (“when was the colored TV invented” v.s.
“when did we invent the colored TV”) and structural similarity
(“when was the car invented”). Though mixed groups are
noisy, both semantic- and structure- based grouping support
unique analysis tasks in isolate: Semantically similar queries
can help identify paraphrases, reveal specific contents being
queried, or evaluate model robustness on semantics-preserving
perturbations [33]. Meanwhile, structurally similar ones iden-
tify queries with common intents (e.g., queries under “is
$NOUN good for me” are all associated with health related
issues), and can serve as the basis for query dataset augmen-
tation [10] (e.g., augment $NOUN with additional medicine
names in “is $NOUN good for me”, or rewrite all the cov-
ered queries to “what does $NOUN do to me”). Our work
prioritizes structural similarity, as this features could be more
explicitly measured, and thus are more interpretable.

Template/Pattern-based Analysis
Structural templates have been implicitly used for various
tasks. In question answering [39, 37], analysts inspect queries
based on their question types (“what”, “who”), which could
be viewed as structures of a short phrase in a query. How-
ever, these “templates” are usually too shallow, covering up
to three words in their lemma forms. In a more explicit man-
ner, rule/pattern-based methods have been extensively used in
information extraction [16, 25, 29]. Hearst [15] identified a
set of lexico-syntactic patterns (again, structures of part of the
sentence) to recognize hyponyms from free-form text. This
approach helps ground various studies on extracting semantic
phrases (drug entities from online medical form [12], product
features from reviews [30], etc.) Later, Ratner et al. [32] recog-
nized pattern-based heuristics as one of the primary source for
writing labeling functions in their data programming system,
Snorkel. In Errudite [41], Wu et al. similarly allowed linguistic
pattern query for grouping instances or doing counterfactual
analysis. Mohasseb et al. [27] enumerated typical syntactic
structures for three different types of web queries, and used
such structures as features for query classification. However,

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 9

https://4.4�0.68

these studies require manual compilation of templates, which
is tedious and prone to human errors and biases. In contrast,
Tempura automatically mines templates from a given dataset.
If used as a basis for Snorkel or Errudite, it could compensate
the potential biases in analysts’ prior knowledge.

Prior work has also explored automatic template generation.
Li [23] structured queries’ noun phrases by identifying intent
heads (primary objects) and their associated attributes. His
templates capture semantic aspects, and tend to include more
concrete ontology definitions. While our templates rely on
standard POS tags and named entities by default, the prepro-
cessing step can be easily customized and embed more sophis-
ticated linguistic abstractions (e.g., ontologies from knowledge
graphs [8]). Hu et al. [19] proposed to automatically abstract
frequent sentence patterns from social media posts. Similarly,
SENPAI [34] mined patterns for social computing related mea-
surements — credibility, politeness, and sentiment. Both have
slightly different definitions than ours, as they focus on raw
token-based templates or frequent subspans of the sentences.
On the contrary, Tempura takes advantage of linguistic fea-
tures, and helps answer more targeted analysis questions from
multiple aspects, at various granularities.

DISCUSSIONS
We contribute Tempura, an interactive tool that lets analysts
explore a query dataset with structural templates. To help
analysts navigate the template space, Tempura uses a traversal
measure that suggests related templates likely to yield further
explorations. To provide an overview, we present a weighted
set cover algorithm to select a template subset that represents
the dataset’s query distribution. We show that the generated
overviews can expose distributional differences between in-
dustrial and academic datasets, with the former being more
sparse. Our user study shows that Tempura lets developers use
meaningful query groups to investigate modeling issues and
improve their models. As the improved models get deployed,
we believe Tempura can help enhance the end-user experience.

Implications beyond Data Exploration and Error Analysis
Our work has broader implications beyond direct use cases.

First, as a framework, the structural template helps us
engage with non-technical ML stakeholders. For exam-
ple, to enhance model evaluation, quality analysts and
designers can build template-based diagnostic sets to ad-
dress model biases (e.g., requesting uniform predictions on
“$-PRON- is a $NOUN”, with $-PRON-=[“she”,“he”],
and $NOUN=[“doctor”,“nurse”].) To de-noise the data,
dataset requesters can implement quality controls in the crowd-
sourced labeling process, and flag queries that are labeled
inconsistently from structurally similar ones.

Second, our analysis results encourages future explorations on
data understanding and wrangling. The distributional differ-
ences between datasets in our case study encourage researchers
to design dataset comparison tools, so to help developers as-
sess whether pre-trained models are suitable for a seemingly
similar domains. On the other hand, half of the errors in our
user study are data related, emphasizing the importance of
data qualities. More in-depth studies can be conducted to

explore the impact of various data wrangling techniques on
model improvement. For example, rectifying distribution gaps
between neighboring templates with data augmentation might
be effective for fixing annotation artifacts [13] (e.g., “how
$do/$can $-PRON- $VERB $NOUN”).

Limitations and Future Extensions
We discuss the limitations introduced by our design decisions
and their corresponding future enhancements.

Assume queries are well-structured. Tempura is currently
implemented and tested for well-structured queries. However,
the syntactic patterns of ill-structured or incomplete queries
(e.g., “$PERSON net worth”, “weather $CITY”) can still
be quite useful to users. In fact, with these queries being
shorter and more to the point, we can potentially generate
templates with higher coverage. We believe Tempura can
handle these queries if we switch to more advanced taggers
(e.g., Ganchev et al. [11] reported 94% tagging accuracy on
real-world search logs). On the other hand, complete but
long queries could generate templates too sparse to explore.
One possible solution is to automatically mine a compact set
of partial templates by omitting insignificant structures from
queries. The insignificance can be defined by either statistics
(similar to frequent pattern mining [14]), or the parsing tree
structure (trimming subclauses on a tree, removing stopwords.)

Prioritize syntactic structures over semantics. As men-
tioned in Related Work, Tempura primarily focuses on the
unique benefits of syntactic similarities. While syntactic struc-
tures can capture semantics to some extent, one important
future direction is to incorporate more semantic understand-
ings. The most straightforward method is to enable more se-
mantically meaningful annotations. For example, with knowl-
edge graphs, tokens like “apple” in [35] can have word sense
labels (fruit or company). Using embedding space similari-
ties, synonyms like “deadliest” and “fatalities” [18] can be
grouped beyond $NOUN. Beyond token-level semantics, we
can also enhance sentence-level grouping by merging struc-
tural paraphrases into larger semantic groups. Tempura cur-
rently achieves such merging via manually created, regular-
expression based templates, but more advanced paraphrasing
detection models [42] can further automate it.

Select template overview with a pre-defined objective.
While our traversal score and selection algorithm enable the
overview+details user experience, depending on analysts’ ob-
jective, alternative methods could be more effective. Like
mentioned in User Study, entropy scores on error rate could
help surface structures that a model perform poorly on. While
stable templates save analysts’ time, doing the reverse and se-
lecting templates with informative traversal options can expose
more interactive exploration options. Future work exploring
the algorithmic space is needed, such that Tempura can cope
with analysts’ different primary objectives.

ACKNOWLEDGMENTS
We gratefully thank Carlos Guestrin, Charlie Maalouf, and
Silviana Ciurea-Ilcus for their helpful comments. We also
appreciate the valuable input from our study participants, and
the constructive comments from the anonymous reviewers.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 10

REFERENCES
[1] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi,

Saied Safaei, Elizabeth D Trippe, Juan B Gutierrez, and
Krys Kochut. 2017. A brief survey of text mining:
Classification, clustering and extraction techniques.
arXiv preprint arXiv:1707.02919 (2017).

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu,
Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference on
computer vision. 2425–2433.

[3] Jaime Arguello, Fernando Diaz, Jamie Callan, and
Jean-Francois Crespo. 2009. Sources of evidence for
vertical selection. In Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval. ACM, 315–322.

[4] Jay Budzik and Kristian J Hammond. 2000. User
interactions with everyday applications as context for
just-in-time information access. In Proceedings of the
5th international conference on intelligent user
interfaces. ACM, 44–51.

[5] Gabriele Capannini, Franco Maria Nardini, Raffaele
Perego, and Fabrizio Silvestri. 2011. Efficient
diversification of web search results. Proceedings of the
VLDB Endowment 4, 7 (2011), 451–459.

[6] Jason Chuang, Margaret E Roberts, Brandon M Stewart,
Rebecca Weiss, Dustin Tingley, Justin Grimmer, and
Jeffrey Heer. 2015. TopicCheck: Interactive alignment
for assessing topic model stability. In Proceedings of the
2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. 175–184.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[8] Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a
Definition of Knowledge Graphs. SEMANTiCS (Posters,
Demos, SuCCESS) 48 (2016).

[9] Cristian Felix, Anshul Vikram Pandey, and Enrico
Bertini. 2017. TextTile: an interactive visualization tool
for seamless exploratory analysis of structured data and
unstructured text. IEEE transactions on visualization
and computer graphics 23, 1 (2017), 161–170.

[10] Adam Fourney and Susan T Dumais. 2016. Automatic
identification and contextual reformulation of implicit
system-related queries. In Proceedings of the 39th
International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 761–764.

[11] Kuzman Ganchev, Keith Hall, Ryan McDonald, and
Slav Petrov. 2012. Using search-logs to improve query
tagging. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short
Papers-Volume 2. Association for Computational
Linguistics, 238–242.

[12] Sonal Gupta, Diana L MacLean, Jeffrey Heer, and
Christopher D Manning. 2014. Induced lexico-syntactic
patterns improve information extraction from online
medical forums. Journal of the American Medical
Informatics Association 21, 5 (2014), 902–909.

[13] Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation Artifacts in Natural Language
Inference Data. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). Association for
Computational Linguistics, New Orleans, Louisiana,
107–112. DOI:http://dx.doi.org/10.18653/v1/N18-2017

[14] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan.
2007. Frequent pattern mining: current status and future
directions. Data mining and knowledge discovery 15, 1
(2007), 55–86.

[15] Marti A Hearst. 1992. Automatic acquisition of
hyponyms from large text corpora. In Proceedings of the
14th conference on Computational linguistics-Volume 2.
Association for Computational Linguistics, 539–545.

[16] Raphael Hoffmann, Luke Zettlemoyer, and Daniel S
Weld. 2015. Extreme extraction: Only one hour per
relation. arXiv preprint arXiv:1506.06418 (2015).

[17] Kenneth Holstein, Jennifer Wortman Vaughan, Hal
Daumé III, Miro Dudik, and Hanna Wallach. 2019.
Improving fairness in machine learning systems: What
do industry practitioners need?. In Proceedings of the
2019 CHI Conference on Human Factors in Computing
Systems. ACM, 600.

[18] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac
Dykeman. 2017. Applying pragmatics principles for
interaction with visual analytics. IEEE transactions on
visualization and computer graphics 24, 1 (2017),
309–318.

[19] Mengdie Hu, Krist Wongsuphasawat, and John Stasko.
2017. Visualizing social media content with sententree.
IEEE transactions on visualization and computer
graphics 23, 1 (2017), 621–630.

[20] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension.
arXiv preprint arXiv:1705.03551 (2017).

[21] Kushal Kafle and Christopher Kanan. 2017. An analysis
of visual question answering algorithms. In Proceedings
of the IEEE International Conference on Computer
Vision. 1965–1973.

[22] Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, and others. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics 7 (2019),
453–466.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 11

http://dx.doi.org/10.18653/v1/N18-2017

[23] Xiao Li. 2010. Understanding the semantic structure of
noun phrase queries. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics,
1337–1345.

[24] Rensis Likert. 1932. A technique for the measurement of
attitudes. Archives of psychology (1932).

[25] Andrew McCallum. 2005. Information extraction:
Distilling structured data from unstructured text. Queue
3, 9 (2005), 4.

[26] Sewon Min, Victor Zhong, Richard Socher, and
Caiming Xiong. 2018. Efficient and robust question
answering from minimal context over documents. arXiv
preprint arXiv:1805.08092 (2018).

[27] Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela
Cocea. 2018. Analysis of the syntactical structure of
web queries. In 2018 International Conference on
Machine Learning and Cybernetics (ICMLC), Vol. 2.
IEEE, 557–562.

[28] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016.
MS MARCO: A Human-Generated MAchine Reading
COmprehension Dataset. (2016).

[29] Marius Pasca and Benjamin Van Durme. 2007. What
You Seek Is What You Get: Extraction of Class
Attributes from Query Logs.. In IJCAI, Vol. 7.
2832–2837.

[30] Ana-Maria Popescu and Orena Etzioni. 2007. Extracting
product features and opinions from reviews. In Natural
language processing and text mining. Springer, 9–28.

[31] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[32] Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017. Snorkel:
Rapid training data creation with weak supervision.
Proceedings of the VLDB Endowment 11, 3 (2017),
269–282.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging nlp models. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
856–865.

[34] Mattia Samory and Tanushree Mitra. 2019. SENPAI:
Supporting Exploratory Text Analysis through Semantic

& Syntactic Pattern Inspection. In Proceedings of the
International AAAI Conference on Web and Social
Media, Vol. 13. 452–462.

[35] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019.
Inferencing underspecified natural language utterances
in visual analysis.. In IUI. 40–51.

[36] Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen.
2006. Building bridges for web query classification. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval. ACM, 131–138.

[37] Yelong Shen, Xiaodong Liu, Kevin Duh, and Jianfeng
Gao. 2017. An empirical analysis of multiple-turn
reasoning strategies in reading comprehension tasks.
arXiv preprint arXiv:1711.03230 (2017).

[38] Ben Shneiderman. 1996. The eyes have it: A task by
data type taxonomy for information visualizations. In
Proceedings 1996 IEEE symposium on visual languages.
IEEE, 336–343.

[39] Soumya Wadhwa, Khyathi Raghavi Chandu, and Eric
Nyberg. 2018. Comparative Analysis of Neural QA
models on SQuAD. arXiv preprint arXiv:1806.06972
(2018).

[40] Peng Wang, Jiaming Xu, Bo Xu, Chenglin Liu, Heng
Zhang, Fangyuan Wang, and Hongwei Hao. 2015.
Semantic clustering and convolutional neural network
for short text categorization. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers). 352–357.

[41] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel S Weld. 2019. Errudite: Scalable, Reproducible,
and Testable Error Analysis. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics. 747–763.

[42] Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and
Haiqing Chen. 2019. Simple and Effective Text
Matching with Richer Alignment Features. In
Association for Computational Linguistics (ACL).

[43] Neal E Young. 2008. Greedy Set-Cover Algorithms:
1974–1979; Chvátal, Johnson, Lovász, Stein.
Encyclopedia of algorithms (2008), 379–381.

[44] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of machine
learning models. IEEE transactions on visualization and
computer graphics 25, 1 (2018), 364–373.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 324 Page 12

	Introduction
	Understanding Query Analysis And Grouping
	Key Tasks: Dataset Exploration and Error Analysis
	Query Grouping: Existing Methods & Requirements

	The Concept of Structural Template
	The Assumption on Query Structures
	Template Generation: Abstracting Query Tokens
	Hierarchy of Templates with Different Granularity

	The Tempura Interface
	Overviews: Bi-directional Starting Point
	Details-on-demand: Multi-aspect/granularity Traversal

	Scoring Traversals
	Template Summarization
	Intuition: Two Aspects to Consider
	Selection as a Weighted Set Cover Problem
	Case Study: Templates Selected from Different Datasets

	Usage Scenario
	User Study
	Q1: Users made actionable observations in Tempura.
	Observations are on datasets and errors.
	Observations are actionable.
	Tempura could be better at error analysis.

	Q2: Attributes as the primary clue.
	Q3: Tempura is effective; Users learned more on dataset.

	Related Work
	Query Text Analysis
	Template/Pattern-based Analysis

	Discussions
	Implications beyond Data Exploration and Error Analysis
	Limitations and Future Extensions

	Acknowledgments
	References

