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ABSTRACT 
Analyzing queries from search engines and intelligent assis-
tants is difficult. A key challenge is organizing queries into 
interpretable, context-preserving, representative, and flexible 
groups. We present structural templates, abstract queries that 
replace tokens with their linguistic feature forms, as a query 
grouping method. The templates allow analysts to create query 
groups with structural similarity at different granularities. We 
introduce Tempura, an interactive tool that lets analysts explore 
a query dataset with structural templates. Tempura summa-
rizes a query dataset by selecting a representative subset of 
templates to show the query distribution. The tool also helps 
analysts navigate the template space by suggesting related 
templates likely to yield further explorations. Our user study 
shows that Tempura helps analysts examine the distribution of 
a query dataset, find labeling errors, and discover model error 
patterns and outliers. 
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CCS Concepts 
•Information systems → Content analysis and feature se-
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computing → Visual analytics; 

INTRODUCTION 
We expect modern search engines and intelligent agents to 
answer knowledge based questions. While the knowledge 
representation and natural language processing communities 
have made great strides [7, 26], these systems still fail at times. 
To improve performance, developers need to analyze the query 
data to understand where models work well, and where they 
can be improved: What are the types of queries that users ask, 
and how well do their models work for these queries? 
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Figure 1. Structural templates t generated from a given query q . 

Such analysis is typically iterative and seeded in two ways. 
First, developers may start by looking at aggregate perfor-
mance metrics like model accuracy, and then drill down into 
more actionable groups [39, 44]. Alternatively, they may start 
with a specific example that represents an experience, and try 
to understand if the example is part of a general trend [41]. 
In both cases, developers need to find coherent query groups 
larger than one example and smaller than the entire dataset. 

Grouping instances to understand performance is easy for 
structured data. For example, given a tabular data, developers 
can easily group and slice it by an explicit, categorical fea-
ture (or column). However, grouping is more difficult with 
unstructured data like text. For instance, text clustering [1] 
or topic modeling [6] can produce groups, but those groups 
are often difficult to understand. They can hardly distinguish 
the similarity between “how rich is Bill Gates” with “how rich 
is Jeff Bezos”, or with “how old is Bill Gates.” Developers 
often try to rationalize those groups by looking at examples 
within the group and guessing what the algorithm did. In fact, 
various existing grouping methods all face certain challenges. 
We analyze their limitations, and formalize four requirements 
for a grouping strategy: To inspire actionable analysis, the gen-
erated groups should be interpretable and context-preserving. 
To enable unbiased analysis, the groups should be representa-
tive of the dataset. Finally, groups should be flexible enough 
to cope with developers’ varying needs. 

While text data are usually tricky, queries are easier to group 
than longer forms of text (e.g., from articles or books). This 
is because queries are generally short and often share similar 
structures. For example, “how rich is Jeff Bezos” and “how 
rich is Bill Gates” are both one sentence questions. They are 
also both identically structured “how rich” questions about a 
person. In this paper, we aim to leverage this compact structure 
in text queries to help developers explore query datasets, and 
create meaningful groups for query analysis. 

First, to group queries, we propose an alternative grouping 
strategy via structural templates, which replace query tokens 
with abstract ones based on linguistic features. For instance, 
the template “how rich is $PERSON” abstracts the query 
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Figure 2. Tempura interface. (A) The template overview panel lists structural templates automatically selected to represent the dataset’s query 
distribution. Each row is associated with attributes summarizing their corresponding queries (E, details in Fig. 5). (B) The query panel lists individual 
queries in the dataset. (C) The template traversal panel allows users to navigate related templates. A focused template selected for traversal (F, enlarged 
in Fig. 8) has visual indicators suggesting related templates to explore. Clicking on the traversal options attached to each linguistic feature opens up the 
neighbor template table (D). The table displays the corresponding parents or children, with the differing linguistic feature highlighted (G). Like in (G), 
all templates allow previewing the example queries covered by an expanded template. Video demo: https://youtu.be/s_ODGuZU4G8. 

“how rich is Bill Gates” in Fig. 1 by replacing the token “Bill 
Gates” with its named entity type, $PERSON. 

Structural templates satisfy the aforementioned requirements. 
Directly generated from the query dataset, they can repre-
sent the data distribution. Linguistic features used in their 
generations help preserve context. They also help developers 
interpret and map between templates and the corresponding 
queries. As we generate many templates for each query using 
different combinations of linguistic features, analysts can flex-
ibly select templates to explore the query dataset from various 
aspects. For example, instead of replacing “Bill Gates” with 
$PERSON to find rich celebrities, one can instead replace “rich” 
with a part of speech (POS) tag $ADJ to explore other queries 
about “Bill Gates” (e.g., “how old is Bill Gates”). Analysts can 
also change the granularity of the grouping. From the template 
“how rich is $PERSON”, one can further abstract $PERSON 
into a POS tag $NOUN. The resulting template “how rich is 
$NOUN” will then include previously omitted queries like “how 
rich is feta cheese”, and reveal ambiguities in the word “rich”. 

Next, to help developers analyze queries with structural tem-
plates, we introduce an interactive system called Tempura 
—template based query analysis (Fig. 2). With Tempura, de-
velopers may begin their analyses by looking at the template 
overview panel, which presents a set of templates to summa-
rize the distribution of a query dataset. Alternatively, they may 
find a particular query of interest in the query panel. Via inter-
active template traversal, developers may navigate between 
query groups with different grouping aspects and granularities. 
Underlying Tempura, we present an entropy-based measure 
to suggest templates that developers may want to traverse to. 
Based on this measure, we also develop a template summa-
rization algorithm to select a template subset for the overview. 

We evaluate Tempura both in terms of the template selection 
algorithm and the system. We demonstrate that the algorithm 
can reveal distributional differences between three datasets 
including Natural Questions [22], MS MARCO [28], and inter-
nal query logs from a commercial conversational assistant. In 
a user study, eight experienced machine learning (ML) devel-
opers analyzed a query dataset and its modeling performance 
with Tempura. Each of them was able to make around five 
interesting observations on either the data or the model. These 
findings included better understandings on dataset distribution, 
labeling noises, as well as patterns and outliers in the model’s 
errors — some of which are actionable observations that can 
help them prioritize their decisions on data cleaning and aug-
mentation. Our users agreed that Tempura helped them make 
more observations with less effort, and suggested additional 
tasks where the structural template can be useful. 

UNDERSTANDING QUERY ANALYSIS AND GROUPING 
We interacted closely with a team of seven ML developers who 
work on query analysis for six months. We studied their work-
flows through weekly informal interviews and direct observa-
tions. Here, we summarize their two primary query analysis 
tasks, both requiring coherent query groupings. We then ana-
lyze the limitations of existing grouping methods, and identify 
four requirements for effective grouping. 

Key Tasks: Dataset Exploration and Error Analysis 
Developers typically need to perform two primary query anal-
ysis tasks. The first task is dataset exploration (T1), in which 
they broadly explore their data and perform sanity checks. 
These sanity checks help developers ensure that their sampled 
data meet their modeling needs (e.g., not under-representing 
certain use cases) and do not have any data quality issues 
(e.g., conflicting labels on similar queries). Data exploration 
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Interpretable Context- Representative Flexible 
(G1) preserv. (G2) (G3) (G4) 

Query properties 3 7 3 7 
Manual labeling 3 3 7 3 

Clustering 7 3 3 7 
Structural templates 3 3 3 3 

Table 1. Four requirements for effective query groupings (G1-G4). Ex-
isting query grouping methods all have limitations. Meanwhile, groups 
created by our structural template satisfy all the requirements. 

requires comparing the distributions of different query groups 
(similarly phrased queries, those with the same labels, etc.) 

The second task is error analysis (T2), in which practitioners 
examine wrong predictions (e.g., from bug reports of deployed 
systems [17]) to understand their models’ deficiencies. In 
this case, developers instead usually start with an individual 
query, and then find if certain errors generalize to systematic 
error patterns. Although these two tasks have different starting 
points, in both cases developers need coherent groupings of 
queries to perform their analyses. 

Query Grouping: Existing Methods & Requirements 
We analyze limitations of existing query grouping approaches, 
and identify four requirements for effective grouping methods: 

G1 Interpretable. Groups should have clear definitions, such 
that developers can predict what queries are included. 

G2 Context-preserving. Groups should consider the actual 
sentence context of the queries, not just coarse properties. 

G3 Representative. Groups should reflect the dataset distribu-
tion, without biasing towards or overlooking queries. 

G4 Flexible. Groups should help developers assess queries 
that are similar (G4a) from different aspects (“how should 
the queries be similar”) and at (G4b) different granulari-
ties (“how similar they should be”). 

In practice, developers frequently grouping by query proper-
ties like query length or query types (e.g., question words). 
However, such groupings only convey those particular at-
tributes, and thus preserve too little context (7 G2) from the 
queries to form groups that reveal actionable insights. One 
developer said “Knowing my model performs poorly on long 
queries does not lead to next steps.” Alternatively, develop-
ers would assign query groups based on domain knowledge, 
either manually or through filtering scripts. Such approach 
may introduce the developers’ biases and cause the groupings 
to be unrepresentative (7 G3). One could mistakenly filter 
and focus on a group of “how rich” questions even when the 
dataset doesn’t contain many such examples [41]. 

Clustering algorithms compensate both issues, capturing more 
sentence meaning than query properties and extracting rep-
resentative groups directly from the dataset. However, de-
velopers only rarely rely on them. They are concerned that 
clustering algorithms may chain unrelated queries together, 
making the groups less coherent. For example, “how rich is 
Jeff Bezos” and “how old is Bill Gates” can be in the same 
cluster, just because they are both similar to “how rich is Bill 
Gates.” As a result, developers usually have a hard time inter-
preting the groups (7 G1). They also cannot flexibly inspect 
how the model respond to “how rich” and “how old” (7 G4). 
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Figure 3. Queries and their generated templates form a many-to-many 
relationship. Each query generates multiple templates, and each tem-
plate covers a different group of queries. 

THE CONCEPT OF STRUCTURAL TEMPLATE 
To develop a grouping method that better satisfies aforemen-
tioned requirements, we leverage the fact that queries are 
typically short and often share similar sentence structure, and 
propose grouping queries via structural templates. Here, we 
first describe how we generate structural templates from a 
query, and how a template can represent a query group. We 
then explain the hierarchical relationship between templates, 
which allows analysts to explore the space of similar queries. 

The Assumption on Query Structures 
Tempura is built on the assumption that queries are properly 
structured to support part-of-speech tagging. While prior work 
describes real-world queries as potentially under-specified, 
terse, and context-dependent [4, 5, 18, 35], our assumption 
is valid here, as we focus on a subset of real-world queries: 
knowledge-seeking questions. Filtering to a query subset is 
common in practice for routing queries based on their format, 
intent, or context. For example, ill-defined queries will trigger 
hard-coded responses like “Sorry I don’t understand.” As a 
result, we work on self-contained questions, which are usually 
cleaner and are in line with the interests of developers we 
interacted with. The questions are also mostly well-formed 
in various question answering datasets (e.g., SQuAD [31], 
VQA [2]) and public query datasets (e.g., Natural Question and 
MS MARCO similarly discard non-question queries), to which 
Tempura would directly apply. That said, the syntactic patterns 
of ill-structured queries are still useful, and we envision how 
Tempura can be extended for those queries in Discussions. 

Template Generation: Abstracting Query Tokens 
We define a structural template to be an abstract query that 
replaces their original tokens with abstract tokens. To produce 
abstract tokens, we use four linguistic features, listed from the 
most specific to the most abstract:1 

1. Lower cased original TEXT (“How” → “how”) 
2. Normalized word form LEMMA (“is” → “$be”) 
3. Named entity type ENT (“Bill Gates” → “$PERSON”) 
4. Part-of-speech POS (“Bill Gates” → “$NOUN”)2 

Each unique combination of the query’s linguistic features 
produces a template. In Fig. 1, the linguistic features [ 
TEXT,TEXT,TEXT,ENT ] generate the template that has ab-
stract tokens [“how”,“rich”,“is”,“$PERSON”]. Because 
we extract multiple linguistic features from each token, a sin-
gle query can produce many templates, each with a different 
1We color the abstract tokens in the templates based on their linguistic 
features: text, $lemma, $named entity, or $POS tag. 
2We merge n-grams entities and noun chunks, such that “Bill Gates” 
can be treated as $PERSON or $NOUN, rather than $PERSON $PERSON. 
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Figure 4. Parent and child templates for “how $ADJ $be $PERSON”, by 
tweaking its different linguistic features: (A) is a parent template found 
by merging $be with other possible LEMMA (e.g., $do) to $VERB (POS). Sim-
ilarly, (B) merges $PERSON with other possible ENT to get $NOUN (POS). 
(C) and (D) are two sets of child templates splitting (C) the $ADJ and (D) 
$PERSON into actual LEMMA forms. 

set of abstract tokens. For instance, “how rich is Bill Gates” 
(q1 in Fig. 3) can generate 5 templates. Each template in turn 
covers multiple queries, and therefore represent a query group. 
In Fig. 3, t2 (“how rich is $PERSON”) represents a group 
of two queries (q1 and q2). 

Templates provide several advantages. First, by pivoting 
query tokens in a controlled manner, we create template-based 
groups that are interpretable (G1) — analysts can easily map 
between queries and templates. Second, because templates 
mirror the syntactic structures of the grouped queries, these 
groups are context-preserving (G2). Finally, as we extract tem-
plates from every query in a dataset, the resulting templates 
can represent the dataset distribution (G3). 

Hierarchy of Templates with Different Granularity 
Because the linguistic features have a ladder of granularity, 
the templates generated with these linguistic features form an 
abstraction hierarchy. For example, person names and loca-
tions are both nouns, so tokens with named entity $PERSON 
and $LOC will all have $NOUN as the POS tag.3 As a result, the 
set of queries covered by “how rich is $PERSON” (t2 in 
Fig. 3) is always a subset of those in “how rich is $NOUN” 
(t3). In other words, t3 is an abstraction of t2. 

The hierarchy provides flexibility (G4). Analysts can traverse 
the hierarchy to examine query groups at different levels of 
granularity (G4b). By changing a linguistic feature in a tem-
plate, one can move up to its parents (templates that are im-
mediately one level less specific) or down to its children (im-
mediately one level more specific). Consider the template 
“how $ADJ $be $PERSON” in Fig. 4: changing the LEMMA 
“$be” to its abstract POS tag “$VERB” generates the parent 
(A), which includes other $VERBs besides $be. Similarly, 
replacing “$PERSON” with its abstract POS tag “$NOUN” pro-
duces the parent (B), which covers more general questions by 
including other $NOUNs beyond $PERSON names. On the other 
hand, splitting “$ADJ” and “$PERSON” to their LEMMA forms 
generate four children, two for (C) and two for (D). 

Analysts can also traverse the hierarchy to examine groups 
from different aspects (G4a). For example, from a template 
that focuses on a specific attribute for different people (“how 
rich $be $PERSON” in Fig. 4C), we can pivot to concentrate 
on different attributes of the same person (“how $ADJ $be 
bill gates” in Fig. 4D). To do so, we can first replace 

3We merge $NOUN and $PROPN for simplicity. 

14%
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168     3

Coverage Label Predict
    2

how rich $be $PERSON
A B C D

Template:

Figure 5. A template’s attributes, summarizing its corresponding query 
group: (A) the number of queries covered; (B) the error rate; and the 
label distribution of queries’ (C) ground truths and (D) predictions. 

“rich” with its abstract POS tag “$ADJ”, and then replace 
“$PERSON” with the TEXT “bill gates”. 

THE TEMPURA INTERFACE 
We develop an interactive system, Tempura, to help developers 
use structural templates for query analysis (Fig. 2). In this 
section, we present how the Tempura interface lets develop-
ers explore the queries and generated templates by showing 
overviews first and providing details on demand [38]. 

Overviews: Bi-directional Starting Point 
The Tempura interface provides both template and query 
overviews. The template overview panel (Fig. 2A) lists a 
set of templates to summarize the query distribution as a start-
ing point for dataset exploration (T1). We later describe how 
Tempura selects templates for this overview in the Template 
Summarization section. The query panel (Fig. 2B) lists individ-
ual queries and lets analysts start error analysis (T2) with one 
query. To help users locate templates and queries to inspect, 
both panels support searching with regular expression. 

Both panels also display attributes associated with each tem-
plate and query, and allow users to sort the table entries based 
on these attributes. The query panel shows a ground truth and 
a predicted label per query. Meanwhile, the template overview 
panel presents attributes of each template’s corresponding 
query group (Fig. 2E), including coverage (the number of 
queries covered by the template) and other statistical attributes 
relevant to the modeling task (explained below). 

The template overview is task-agnostic, as the table can show 
different statistics for different modeling tasks. For exam-
ple, Fig. 5 shows attributes for a text classification task. The 
stacked bar chart in Fig. 5B indicates the model performance 
with error rate, or the ratio of incorrectly predicted queries 
associated with a template. The distribution bar glyphs in 
Fig. 5C and 5D show class distributions for the ground truth 
and the prediction respectively. In this example, the template 
contains three ground truth labels, but only two predicted la-
bels (with one dominating). These bar glyphs reveal that the 
covered queries receive similar predictions, regardless of the 
actual $PERSON in the query. In contrast, if the template con-
tains only one ground truth label but many predicted labels, 
the model is likely not robust, and thus can be easily swayed 
by $PERSON. To see more details about the distributions, users 
can click on the glyphs to open a popup window showing an 
enlarged bar chart (Examples in Fig. 9). 

Details-on-demand: Multi-aspect/granularity Traversal 
After starting their analyses from the two overviews, analysts 
can further explore query groups of interest on demand with 
template traversal, and thereby get varying views of the data. 
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Figure 6. Given a focused template t =“how $ADJ $be $PERSON”, we 
can traverse to its parents (up arrows on top of $be and $PERSON), or 
children (down arrow under $ADJ and $PERSON). The color density of 
the arrows indicates how informative a traversal is. Bar charts denote 
the coverage distribution of the templates affected by the traverse.4 

Basically, analysts can traverse the template hierarchy, by 
moving up to inspect coarser (more abstract) parents or down 
to examine finer-grained (more specific) children templates. 

To explore different query groups with template traversal, an-
alysts can first select a template of interest (Fig. 2A). Based 
on the selection, the traversal panel (Fig. 2C) shows a focused 
template on the top (Fig. 2F). For each token in the template, 
the panel presents an arrow and a bar glyph to indicate poten-
tial traversal options. The arrow denotes the corresponding 
token’s traversal direction: moving to children (down) or a 
parent (up). For example, the arrows in Fig. 6 indicate the 
corresponding two parent and two children sets in Fig. 4. 

The bar glyphs help preview the templates related to cor-
responding traversals. For a downward traversal, the bar 
glyph shows the children templates and their coverage. The 
four bars in Fig. 6C indicates that moving from $ADJ to its 
children will generate 4 templates (“how { $old, $much, 
$big, $strong } $be $PERSON”). We can also see that 
the coverage of the four children is roughly even. For an up-
ward traversal, the bars represents sibling templates (templates 
with the same parent). The bar glyph in Fig. 6B shows that 
moving from $PERSON to $NOUN will merge the current tem-
plate “how $ADJ $be $PERSON” with another sibling tem-
plate “how $ADJ $be $LOC”, which has a lower coverage. 

When analysts select a traversal direction (by clicking an ar-
row), Tempura creates a neighbor template table (Fig. 2D), 
which lists all corresponding neighbor templates shown in the 
bar glyph and their attributes. As children or siblings of the 
focused template, these templates only differ from each other 
by one token. Therefore, showing them in one table helps 
contrast similar query groups. 

To help analysts avoid tediously enumerating all the traversal 
options, we further compute traversal scores, and use them to 
compare and rank all the traversal options. The score measures 
how informative a traversal action is, or which traversal is 
likely to yield further exploration. For example, moving from 
a coarse parent template to its children is informative, when 
the move provides multiple representative subgroups. We 
use the color density of the arrow to encode the score. The 
darker the arrow, the more preferable the traversal. In Fig. 8C, 
the dark arrow suggests traversing down $ADJ — an exact 
example of “provides multiple representative subgroups.” We 
formalize this score in the next section. 

4For simplicity, we omitted t from the entropy equations (e.g., 
Sc(2,LEMMA) in C represents Sc(t,2,LEMMA)). 

SCORING TRAVERSALS 
We introduce the traversal score used to color traversal ar-
rows in the interface. We want to guide the analyst towards 
templates that have only a few abstract tokens, because they 
are more interpretable (G1) and context-preserving (G2) than 
those containing only abstract tokens. However, suggested 
templates should also cover enough queries to ensure that they 
are representative enough to be worth exploring. 

Suppose an analyst starts with the template t in Fig. 6. She can 
make $ADJ less abstract (C), to inspect all the child templates 
that have a LEMMA for that token. This action “splits” the 
current template into finer-grained templates, as in Fig. 4C. We 
encourage this traversal when each of the split children covers 
a significant number of queries. Conversely, this traversal is 
not useful when only one or a few children cover the majority 
of queries associated with t. In such cases, analyzing the high-
coverage child yield a slightly more specific subgroup, but at 
the cost of seeing less queries overall. 

To help users weigh this tradeoff, we define a traversal score 
for each available traversal starting from a template t. Let ti 
be the abstract token at position i in t, and |t| be the template 
coverage. Let C(t, i, l) = {s ∈ Children(t) : si = l, |s| > 1} be 
the subset of children covering more than one query, where 
we have set the i-th token to be a less abstract token, us-
ing a less abstract linguistic feature l. In our previous $ADJ 
case, the templates in Fig. 4C (also Fig. 6C) are examples of 
C(t,2,LEMMA). Because all the templates in C(t, i, l) differ on 
the i-th abstract token, their covered queries are mutually ex-
clusive. For traversing to child templates, Sc(t, i, l), we use the 
entropy of the normalized coverage of a template’s children, 

|s| |s|
Sc(t, i, l) = − ∑ log

|C(t, i, l)| |C(t, i, l)|s∈C(t,i,l) 

where |C(t, i, l)| = ∑s∈C(t,i,l) |s|. 
We use the entropy to encourage traversals where each of the 
children have a similar amount of coverage. We discourage 
traversals when the distribution of coverage among those chil-
dren is “peaked”; in those cases, the resulting templates have 
reduced coverage while providing only a small increase to the 
coherence for each subgroup of queries (G1). 

Similar to traversing towards children, analysts can traverse 
to parent templates, i.e., use a more abstract linguistic feature 
l for i-th token in t. While traversing towards children splits 
a template, traversing to a parent conversely merges sibling 
templates (templates that have the same linguistic features as 
t and have the same parent). For example, templates in any 
C(t, i, l) are siblings of each other. Just as before, we define a 
traversal score which encourages traversing to parents whose 
child templates each cover a significant number of queries. For 
the parents of t that arise from making token i more abstract, 
we compute the same entropy score as before, but instead 
normalize over the siblings of t, R(t, i, l) = {s ∈ Siblings(t) : 
si = l}. We denote this score Sp(t, i, l). 

TEMPLATE SUMMARIZATION 
We now present an algorithm that helps select templates for the 
template overview panel (Fig. 2A). Our goal is to select a set of 
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representative templates to summarize the query distribution, 
and use it as a starting point for dataset exploration (T1). 

Intuition: Two Aspects to Consider 
To construct representative groups of queries, we prefer tem-
plates with high coverage. Meanwhile, to effectively initiate 
the exploration, we want to include templates that are more 
preferred than any of its parents or children. If the parents 
or children are preferred, analysts will need to perform extra 
traversing steps to reach the interesting grouping structure. 

The traversal score defined previously provides a ranking 
between a given template and all its parents and children. 
A template t should be selected when we do not encourage 
traversing to any of its parents or children. We define I(t) to 
be the maximum of t’s traversal scores — all the Sc(t, i, l) and 
Sp(t, i, l) for different tokens i and abstract tokens l: 

I(t) = max(maxSc(t, i, l),maxSp(t, i, l)) 
i,l i,l 

Recall that traversal scores represent preferences towards par-
ents and children. With I(t) being the maximum, the lower it 
is, the less likely t should be split or merged at any tokens, and 
therefore the more likely we want to include it in the overview. 

Selection as a Weighted Set Cover Problem 
To take these two aspects into consideration, we form the tem-
plate selection as a weighted set coverage problem. We see 
the query dataset Q = {q1, ...,qn} as the entire set of elements. 
Then, each template t in T = {t1, ..., tm} represents a subset 
of Q that contains a number of queries |t| (the template cov-
erage). We use I(t) as the weights, such that templates with 
low preferences are penalized by having a high weight. Our 
goal is to find a set T ∗ ⊂ T such that (1) T ∗ covers at least aS
user-specified ratio, c, of queries:|T ∗| = | t∈T∗ t| ≥ c|Q|; and 
(2) the sum of the weights of the subsets in T ∗ is minimized. 

Algorithm 1: Template selection 
Data: query set Q, generated templates T , min cover. ratio c 
Result: a list of overview templates T ∗ 

1 T ∗ = {}; 
2 while |T ∗| < c|Q| do 
3 t∗ = argmint∈T I(t) / (|T ∗ ∪{t}| − |T ∗|) ; 

∗ 4 T = T ∗ ∪{ t∗ } ; 
∗ 5 return T 

Weighted set coverage is a NP-complete problem. Here we 
use a classic greedy algorithm (Algorithm 1) to compute an 

∗approximate T [43]. The algorithm repeatedly chooses a 
template t that minimizes the weight I(t) divided by number 
of queries in t not yet covered by the chosen templates (|T ∗ ∪ 
{t}| − |T ∗|). It then stops and returns the chosen templates 
(T ∗) when they form a cover of the original set of queries. 

We experiment our selection algorithm on different query 
datasets. Compared to alternative weighting strategies, our 
algorithm selects a larger number of templates, but tends to 
selects more interpretable and context-preserving “what $be 
$NOUN” rather than “what $VERB $NOUN”). We find the al-
gorithm can reduce the exploration burden: Heuristically, to 

Dataset 
NQ 

l(q) 
7.6 ± 1.8 

|T |
2,662,618 

#|t| > 1 
16,976 (0.66%) 

MS MARCO 5.2 ± 2.5 992,483 6,601 (0.66%) 
Assistant 5.3 ± 1.6 509,734 29,732 (5.83%) 

Table 2. The tested datasets with their query lengths l(q), and the at-
tributes on generated templates. From the total number of generated 
templates (|T |) and the proportion of those covering at least two queries 
(|t| > 1), we see NQ and MS MARCO are more sparse than Assistant. 

cover 75% queries of a dataset, the method selects a number of 
templates that is around 10% of the dataset size (for a 10,000 
query dataset, the method selects around 1,000 templates). 

Case Study: Templates Selected from Different Datasets 
To test whether our automatic template generation and sum-
marization can reveal dataset characteristics, we use Tempura 
to process three datasets:5 (1) Natural Question (NQ) [22] and 
(2) MS MARCO [28], which are collections of real queries is-
sued to Google and Bing Search Engines, respectively, as well 
as (3) anonymized search queries from a commercial conversa-
tional assistant (Assistant) that occur on more than 10 different 
devices. The queries are all seeking general knowledge (not 
related to personal information). They are automated speech 
recognition transcripts with no audio attached. 

These datasets are used for training question answering sys-
tems [20].We are interested in understanding if queries from 
different sources differ. To explore this, we sample 10,000 
queries from each dataset (with the training and the develop-
ment set combined) and generate templates from them. We 
report two major results below. 

Crafted research datasets are sparser. The number of gen-
erated templates in Table 2 reveals NQ’s apparent distribu-
tional difference. It generates many more unique templates 
(around 2.5 million) compared to the other two alternatives 
(within 1 million). This is likely because additional filters on 
NQ only keep queries that have (1) more than eight words6, 
and (2) a closely related Wikipedia page. The cartesian prod-
uct of linguistic features then generates more templates from 
the longer queries. In other words, while the filters help locate 
complex questions, they also shift the distribution to be less 
representative of the natural queries. While MS MARCO gen-
erates fewer templates than NQ, it still contains more diverse 
queries than Assistant: Both NQ and MS MARCO only have 
0.66% templates with coverage greater than 1. 

Real-world queries have different distributions. Further 
comparing the less sparse MS MARCO and Assistant, we no-
tice that the most representative templates differ. While “what 
be $NOUN” is an important template in both MS MARCO and 
Assistant, this template has a much higher coverage in the for-
mer. The selected templates diverge afterwards: MS MARCO 
has many $NOUN (e.g., “401k loan requirements”, “employee 
turnover types”) while Assistant has more “what $do $NOUN 
mean” queries. The $NOUN case in MS MARCO is especially 
interesting: all the query datasets were filtered to only keep 
knowledge-seeking question queries, yet the other two didn’t 
5We augment linguistic features with SpaCy (https://spacy.io/). 
6NQ’s average query length appears to be less than eight in the table, 
as we merged noun chunks. 
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Figure 7. The five most representative templates and most frequent 
query types for the sampled queries in (A) Assistant, and (B) MS 
MARCO. They have similar query types, but their templates differ af-
ter “what $be $NOUN”. This indicates that the templates can capture 
more dataset characteristics than the conventional query types. 

show any $NOUN queries, indicating different filtering strate-
gies. Such dataset differences are difficult to notice from just 
the query types (in Fig. 7) or query length (in Table 2). 

USAGE SCENARIO 
We present a scenario to demonstrate how developers can 
use Tempura to better evaluate a BERT-based classification 
model [7] on a query dataset. The task is to predict if a query 
is in one of four categories: food (“can I freeze spaghetti”), 
health (“what is Keflex used for”), procedural explanations 
on how to perform some tasks (“how to clean white shoes”), 
or none of above. The dataset contains 10,000 anonymized, 
knowledge-seeking queries from Assistant (75% of which are 
covered by the selected overview templates). It is a sample of 
the development set that the developers are building a model 
on. This scenario is inspired by the analyses that participants 
perform in our user study, which uses the same data. 

The developer first filters the templates to only keep those 
covering more than ten queries, and sorts them by their error 
rate in descending order (Fig. 10). The template with the high-
est error rate is “how $can $-PRON- $VERB $NOUN”. Out 
of the 26 covered queries, 46% are incorrectly predicted. In-
specting them, he notices noisy labels, namely similar queries 
are labeled as asking for a procedural explanation (“how can I 
boil eggs”7) and about food (“how can I cook salmon”). The 
developer verifies that queries on cooking procedures make 
these two label pairs non-exclusive. He treats this observation 
as supporting evidence to switch to a multi-label classifier. 

Afterwards, the developer explores similar templates via tem-
plate traversal. With the focused template panel (Fig. 8), he 
notices the dark arrow in B, which suggests that merging $can 
into its parent POS form ($VERB) is the most informative traver-
sal. Other traversals indeed seem less useful. The bar charts 
associated with $VERB and $NOUN (C) show that they have a 
large number of sparse and unrepresentative children. Mean-
while, merging $how (A) yields a very little gain, as its two 
neighboring templates have few queries associated with them. 

7All the queries referred in the paper have a query frequency larger 
than 10, i.e., occur on at least ten unique devices. 

how $can $-PRON- $VERB $NOUN
A B

C

Figure 8. Traversing a focused template. The dark arrow in B suggests 
moving from $can to its parent form $VERB. 
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how $can $-PRON- $VERB $NOUN
Figure 9. The ground truth label distributions for queries covered by 
two closely related neighboring templates, with (B) “how $do $-PRON-
$VERB $NOUN” having a much larger portion of food related queries. 

Thus, the developer follows the suggestion, and traverses up 
from $can. Doing so triggers the neighboring template panel 
(Fig. 2D) to present sibling templates with different $VERBs. 
He notices that the dataset contains a large number of queries 
in the form of “how $do $-PRON- $VERB $NOUN”. By ex-
panding the bar charts for the ground truth labels (Fig. 9), 
we see an interesting label distribution difference between 
the two templates: the queries under the $can template are 
labeled as health, none, and procedural while those under $do 
are mainly food related. The developer notes that queries in 
these two forms should be similar, and proposes to augment 
the data (i.e., to create another batch of food questions by 
replacing “do” with “can”). 

Despite the distribution differences between “$can” and 
“$do”, the developer deems these templates identical, and 
moves to inspect “how $VERB $-PRON- $VERB $NOUN”. 
Afterwards, he instead traverses down the second $VERB to 
understand what are the actions being queried. Fig. 10 shows 
a neighbor template table for the traversal. Among the four 
child templates covering most queries, “how $VERB $-PRON-
$cook $NOUN” has the most indicative verb, with all queries 
labeled and predicted to be food related. Meanwhile, “how 
$VERB $-PRON- $do $NOUN” has high error rate with only 
one predicted label (none). Retrieving its queries, the devel-
oper notices that all but one are labeled as procedural. He 
suspects the model neither understands the template, nor recog-
nizes the $NOUNs (“division”, “a screen recording”, etc.) This 
model error pattern suggests the model has underfitted to 
this form of query. The lemma $make has the highest coverage. 
The model predicts most of the “$make” queries to be food. 
However, 6 of 33 queries are labeled as procedural despite in-
volving alcoholic beverages (“how do you make vodka”, “how 
do you make a margarita”). In hindsight, these queries could 
arguably have both labels. Furthermore, in $play, we see a 
model error outlier: with “chess” and “old maid” both being 
board games, “how do you play chess” is labeled as procedural 
but predicted as none, whereas “old maid” shows the reverse: 
labeled as none but predicted as procedural. Our developer 
notes the conflict and decides to double check the labels, as 
well as the model stability on various similar $NOUNs. 

Hoping to see a comprehensive list of procedural queries, 
the developer samples more queries with the procedural la-
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Figure 10. Neighbor template table showing the top four LEMMA ($make, 
$cook, $play, and $do) after splitting the second $VERB in “how $VERB 
$-PRON- $VERB $NOUN”. 

bel. He notices many queries asking “how to do (some-
thing).” He generalizes from those queries to a template, 
“how to $VERB $NOUN”. He finds that this template (with 
35 queries) has a higher portion of food queries (85.7%), 
but most queries are semantically similar to those in “how 
$VERB $-PRON- $VERB $NOUN”. He creates a single, reg-
ular expression-related template capturing both subgroups: 
“how ($VERB $-PRON-|to)+ $VERB $NOUN”, so he can re-
visit these queries in future investigation. 

USER STUDY 
We ran a user study to answer the following three questions: 

Q1 Can Tempura support data exploration and error analysis, 
and help participants make actionable observations easily? 

Q2 How do analysts decide which templates to inspect? 
Q3 Are Tempura’s components useful for exploration? 

Our user study lasted for one hour. We first surveyed par-
ticipants’ query analysis experience. Next, we provided a 
tutorial outlining the features of Tempura. Participants then 
used Tempura to explore the same data and model as described 
in Usage Scenario. We encouraged participants to think aloud 
and describe their observations while they explored. We noted 
down their observations throughout the session (Q1), and 
also logged their clickstreams for analyzing their exploration 
process (Q2). Afterwards, we confirmed the recorded observa-
tions with the participants, and they rated each observation by 
the ease of discovery, relative to their prior experience working 
with queries in the wild. Participants further self-assessed how 
much more they learned about the dataset and the model, and 
rated the usefulness of different components in Tempura (Q3). 
All the ratings were collected in the form of five-point Likert 
scale [24]. Eight ML developers at Apple participated in our 
study, all with prior query analysis and modeling experience 
(worked on 3-10 datasets, µ = 6.2). Below, we answer the 
questions with the study outputs. 

Q1: Users made actionable observations in Tempura. 
Observations are on datasets and errors. 
As mentioned in Usage Scenario, participants noticed both 
general patterns and outlier behaviors in dataset and error anal-
ysis. Their observations can be divided into four categories, 
as in Table 3. On average, subjects reported 5.4 ± 1.83 obser-
vations.8 In total, participants made 26 unique observations. 
Participants made around the same number of observations 
8We counted participants’ self-reported observations. Recall that we 
confirmed and asked them to rate each one of their observations. 

on datasets and on models, indicating Tempura can support 
both tasks. They consistently rated that it was easier to make 
observations in Tempura (4.5± 0.73). 

Observations are actionable. 
Five out of eight participants noted that their observations were 
actionable, and proposed several potential next steps. For ex-
ample, templates helped them improve their labeling tasks. 
With templates covering interchangeably labeled queries (data 
noise issue), they would not only clean up existing labels, but 
use example queries in those template groups to revise the 
labeling instructions. Templates’ label distributions could also 
guide training data revision. Participants would overcome 
the template overfitting issue (i.e., queries covered by one 
template are all predicted the same, regardless of their labels) 
by collecting data with the same syntax but different label. 
In contrast, for underfitting templates (i.e., the correlation 
between a template and a label is not correctly learned), partic-
ipants would augment the data with semantically neighboring 
templates. Templates could also help build targeted and chal-
lenging validation sets for testing specific syntax phenomena. 

Tempura could be better at error analysis. 
Participants agreed that they understood more about both the 
dataset (4.4 ± 0.45) and the model (3.9 ± 0.90). Generally, 
participants believed their analysis on data distribution was 
more thorough, because various factors that Tempura does not 
consider — model architecture, transfer learning effect — can 
all account for an imperfect model. They offered suggestions 
on improving Tempura for error analysis. For example, to 
prioritize problematic templates, we could select overview 
templates using entropies on model related measurements 
(e.g., error rates). Such measurement can further surface tem-
plates related to error analysis, but we worry it would focus 
too much on a specific model, at the cost of general dataset 
information. One participant also mentioned that adding word 
frequencies could help understand whether the model is over-
fitting to particular templates or keywords. In fact, structural 
templates can be paired with many conventional attributes 
(query length, sentiment, etc.) Further investments are needed 
to understand which additional debugging attribute provides 
the most comprehensive view. 

Q2: Attributes as the primary clue. 
We retrieved participants’ clickstreams affecting the overview 
table, and programmatically labeled them into four types: find-
ing templates that (1) have a certain attributes pattern like high 
error rate or coverage (Attr), (2) contain queries with specific 
ground truth or prediction label(s) (Label), (3) satisfy a partial 
template search filter, in the form of regular expression pattern 
(Regex), and (4) are generated from a specific query (Query). 

The results revealed that participants surfaced templates they 
would like to inspect via all strategies, but the most common 
ones were by sorting or filtering Attrs (used by all participants), 
or particular Labels (seven participants). Users’ free form 
responses reflected that they highly valued the coverage and 
error rate. Three participants (P3, P6, P8) also commented that 
the label distributions were useful. P6 said he actively searched 
for structural overfitting (templates with only one prediction 
label). P8 expressed particular interest in templates with more 
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Observation Type Count Examples 
Dataset distribution 7 (27%) “how long $do $-PRON- $VERB $NOUN (for)*” (148 queries) are all food related (e.g., “how long do you boil corn”), 

whereas “how long $do $-PRON- take for $NOUN to $VERB” (16 queries) has half of health queries (e.g., “how 
long does it take for a piercing to heal”). 

Dataset noise 7 (27%) 2 out of 86 queries in “can dog (have|eat)+ $NOUN” are labeled as health, but the $NOUNs are all food (“corns”, “rice”). 
All the 9 queries in “what $be the benefit of $NOUN” are predicted to be health, but 4 are labeled as none. 

Model error pattern 10 (38%) The model cannot understand rare tokens. The $NOUNs in “what $be $NOUN used for” (57 queries) are all medical 
related, but the model only predicts 28 (49.1%) to be health — possibly affected by their training frequencies. 
Overfitting to templates. “is $NOUN bad for $-PRON-” (5 queries) are all predicted to be health related, even for “is 
college bad for you” (supposed to be none). 

Model error outlier 2 (8%) In “can $-PRON- $VERB $NOUN” (29 queries), similar queries are predicted differently: “can I block a contact” is 
predicted as none, whereas “Can I block unwanted phone calls” is procedural. 

Table 3. Participants’ example observations on (1) Dataset distribution (they observed frequent query patterns); (2) Dataset noise (they discovered 
labeling issues or illegitimate queries); (3) Model error pattern (they concluded systematic error categories); (4) Model error outlier (they noticed 
model’s specific strange behaviors that are not generalizable, or that related queries are mostly correctly predicted). 

varying labels: “Sometimes we locally improve models for 
queries with certain patterns. This helps me understand, for 
example, if the data augmentation on a specific label has 
negative effects on queries with the same syntax but different 
labels.” Only four participants generalized template structures 
from a Query. P7 explained that generalization required more 
of a mental model on the template-query mapping, and thus 
was harder than starting from template overviews. 

Q3: Tempura is effective; Users learned more on dataset. 
When assessing the usefulness of different components, users 
rated the algorithm selected overview templates (4.2 ± 0.63), 
cross-filtering between templates and queries (4.4±0.68), and 
supportive attributes (e.g., error rate) & interactions (e.g., sort-
ing) (4.7 ± 0.41) as very useful, and rated template traversal 
(3.6 ± 0.83) as potentially useful. They especially liked the 
combination of templates and attribute summaries, saying 
it greatly helped redirect their attentions to important query 
groups. The lower rating for traversal could be due to the size 
of the dataset. As P4 pointed out, “With 10k queries, inter-
esting hierarchical groups are less common. I found myself 
sometimes getting many low coverage child templates.” 

Participants all thought Tempura was intuitive to learn, and 
at the same time it greatly enhanced their query exploration 
experience. Five users commented that Tempura offered a 
finer-grained and systematic analysis process, making their 
observations more precise. They mentioned that structural 
templates provided more efficient and intuitive starting points 
for categorizing raw queries, helped them to bypass the large 
coding overhead needed, and sped up their otherwise tedious 
manual process. The speed up was significant. As P1 de-
scribed: “I learned 7 new things in the last half an hour! 
Without the tool, I would spend all those time writing Python 
scripts without knowing if it will lead to anything significant.” 

RELATED WORK 

Query Text Analysis 
Seeking to reveal systematic and actionable patterns in a 
dataset, existing analysis methods usually slice text queries 
into groups-of-interest in various ways. However, grouping 
unstructured queries is challenging. Groups created manually 
or via grouping scripts [41, 32] are usually not representative 
of the dataset distribution. Filters on query properties can scale 
(e.g., word frequency [9], query length or answer type [39, 
21]), but prior work has noted that such features usually could 

either overlook the context of the whole sentence [27, 34], or 
get too abstractive to be precise and interpretable [6]. 

Meanwhile, without isolating features, researchers have also 
tried to organize the dataset by automatically classifying [36, 
3] or clustering [1] similar queries together. To date, such al-
gorithms measure similarities with TF-IDF [1] or embedding-
based [40] distances, which usually result in query groups 
with mixed semantic (“when was the colored TV invented” v.s. 
“when did we invent the colored TV”) and structural similarity 
(“when was the car invented”). Though mixed groups are 
noisy, both semantic- and structure- based grouping support 
unique analysis tasks in isolate: Semantically similar queries 
can help identify paraphrases, reveal specific contents being 
queried, or evaluate model robustness on semantics-preserving 
perturbations [33]. Meanwhile, structurally similar ones iden-
tify queries with common intents (e.g., queries under “is 
$NOUN good for me” are all associated with health related 
issues), and can serve as the basis for query dataset augmen-
tation [10] (e.g., augment $NOUN with additional medicine 
names in “is $NOUN good for me”, or rewrite all the cov-
ered queries to “what does $NOUN do to me”). Our work 
prioritizes structural similarity, as this features could be more 
explicitly measured, and thus are more interpretable. 

Template/Pattern-based Analysis 
Structural templates have been implicitly used for various 
tasks. In question answering [39, 37], analysts inspect queries 
based on their question types (“what”, “who”), which could 
be viewed as structures of a short phrase in a query. How-
ever, these “templates” are usually too shallow, covering up 
to three words in their lemma forms. In a more explicit man-
ner, rule/pattern-based methods have been extensively used in 
information extraction [16, 25, 29]. Hearst [15] identified a 
set of lexico-syntactic patterns (again, structures of part of the 
sentence) to recognize hyponyms from free-form text. This 
approach helps ground various studies on extracting semantic 
phrases (drug entities from online medical form [12], product 
features from reviews [30], etc.) Later, Ratner et al. [32] recog-
nized pattern-based heuristics as one of the primary source for 
writing labeling functions in their data programming system, 
Snorkel. In Errudite [41], Wu et al. similarly allowed linguistic 
pattern query for grouping instances or doing counterfactual 
analysis. Mohasseb et al. [27] enumerated typical syntactic 
structures for three different types of web queries, and used 
such structures as features for query classification. However, 
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these studies require manual compilation of templates, which 
is tedious and prone to human errors and biases. In contrast, 
Tempura automatically mines templates from a given dataset. 
If used as a basis for Snorkel or Errudite, it could compensate 
the potential biases in analysts’ prior knowledge. 

Prior work has also explored automatic template generation. 
Li [23] structured queries’ noun phrases by identifying intent 
heads (primary objects) and their associated attributes. His 
templates capture semantic aspects, and tend to include more 
concrete ontology definitions. While our templates rely on 
standard POS tags and named entities by default, the prepro-
cessing step can be easily customized and embed more sophis-
ticated linguistic abstractions (e.g., ontologies from knowledge 
graphs [8]). Hu et al. [19] proposed to automatically abstract 
frequent sentence patterns from social media posts. Similarly, 
SENPAI [34] mined patterns for social computing related mea-
surements — credibility, politeness, and sentiment. Both have 
slightly different definitions than ours, as they focus on raw 
token-based templates or frequent subspans of the sentences. 
On the contrary, Tempura takes advantage of linguistic fea-
tures, and helps answer more targeted analysis questions from 
multiple aspects, at various granularities. 

DISCUSSIONS 
We contribute Tempura, an interactive tool that lets analysts 
explore a query dataset with structural templates. To help 
analysts navigate the template space, Tempura uses a traversal 
measure that suggests related templates likely to yield further 
explorations. To provide an overview, we present a weighted 
set cover algorithm to select a template subset that represents 
the dataset’s query distribution. We show that the generated 
overviews can expose distributional differences between in-
dustrial and academic datasets, with the former being more 
sparse. Our user study shows that Tempura lets developers use 
meaningful query groups to investigate modeling issues and 
improve their models. As the improved models get deployed, 
we believe Tempura can help enhance the end-user experience. 

Implications beyond Data Exploration and Error Analysis 
Our work has broader implications beyond direct use cases. 

First, as a framework, the structural template helps us 
engage with non-technical ML stakeholders. For exam-
ple, to enhance model evaluation, quality analysts and 
designers can build template-based diagnostic sets to ad-
dress model biases (e.g., requesting uniform predictions on 
“$-PRON- is a $NOUN”, with $-PRON-=[“she”,“he”], 
and $NOUN=[“doctor”,“nurse”].) To de-noise the data, 
dataset requesters can implement quality controls in the crowd-
sourced labeling process, and flag queries that are labeled 
inconsistently from structurally similar ones. 

Second, our analysis results encourages future explorations on 
data understanding and wrangling. The distributional differ-
ences between datasets in our case study encourage researchers 
to design dataset comparison tools, so to help developers as-
sess whether pre-trained models are suitable for a seemingly 
similar domains. On the other hand, half of the errors in our 
user study are data related, emphasizing the importance of 
data qualities. More in-depth studies can be conducted to 

explore the impact of various data wrangling techniques on 
model improvement. For example, rectifying distribution gaps 
between neighboring templates with data augmentation might 
be effective for fixing annotation artifacts [13] (e.g., “how 
$do/$can $-PRON- $VERB $NOUN”). 

Limitations and Future Extensions 
We discuss the limitations introduced by our design decisions 
and their corresponding future enhancements. 

Assume queries are well-structured. Tempura is currently 
implemented and tested for well-structured queries. However, 
the syntactic patterns of ill-structured or incomplete queries 
(e.g., “$PERSON net worth”, “weather $CITY”) can still 
be quite useful to users. In fact, with these queries being 
shorter and more to the point, we can potentially generate 
templates with higher coverage. We believe Tempura can 
handle these queries if we switch to more advanced taggers 
(e.g., Ganchev et al. [11] reported 94% tagging accuracy on 
real-world search logs). On the other hand, complete but 
long queries could generate templates too sparse to explore. 
One possible solution is to automatically mine a compact set 
of partial templates by omitting insignificant structures from 
queries. The insignificance can be defined by either statistics 
(similar to frequent pattern mining [14]), or the parsing tree 
structure (trimming subclauses on a tree, removing stopwords.) 

Prioritize syntactic structures over semantics. As men-
tioned in Related Work, Tempura primarily focuses on the 
unique benefits of syntactic similarities. While syntactic struc-
tures can capture semantics to some extent, one important 
future direction is to incorporate more semantic understand-
ings. The most straightforward method is to enable more se-
mantically meaningful annotations. For example, with knowl-
edge graphs, tokens like “apple” in [35] can have word sense 
labels (fruit or company). Using embedding space similari-
ties, synonyms like “deadliest” and “fatalities” [18] can be 
grouped beyond $NOUN. Beyond token-level semantics, we 
can also enhance sentence-level grouping by merging struc-
tural paraphrases into larger semantic groups. Tempura cur-
rently achieves such merging via manually created, regular-
expression based templates, but more advanced paraphrasing 
detection models [42] can further automate it. 

Select template overview with a pre-defined objective. 
While our traversal score and selection algorithm enable the 
overview+details user experience, depending on analysts’ ob-
jective, alternative methods could be more effective. Like 
mentioned in User Study, entropy scores on error rate could 
help surface structures that a model perform poorly on. While 
stable templates save analysts’ time, doing the reverse and se-
lecting templates with informative traversal options can expose 
more interactive exploration options. Future work exploring 
the algorithmic space is needed, such that Tempura can cope 
with analysts’ different primary objectives. 
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